Biotechnology and Bioprocess Engineering

, Volume 14, Issue 1, pp 60–66 | Cite as

Optimization of extraction and purification of glucoamylase produced by Aspergillus awamori in solid-state fermentation

  • Sangeeta NegiEmail author
  • Rintu Banerjee


Various parameters such as solvent selection, concentration, soaking time, and temperature were tested in a single bioreactor in order to determine optimum extraction conditions of glucoamylase, when produced simultaneously with protease by Aspergillus awamari nakazawa MTCC 6652. Optimum conditions were achieved in a 10% glycerol solution soaked for 2 h at 40°C, followed by concentration of extracted glucoamylase (9,157 U/gds) by acetone precipitation (1:2, v/v), which yielded 51.9% recovery. Ion exchange chromatography and gel filtration showed specific activities of 270.5 and 337.5 U/mg, respectively, while SDS-PAGE and zymogram analysis of glucoamylase indicated the presence of three starch-hydrolyzing isoforms with molecular weights of approximately 109.6, 87.1, and 59.4 kDa, respectively


amylase Aspergillus awamori enzyme extraction gel filtration SDS-PAGE 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Pandey, A., P. Nigam, C. R. Soccol, V. T. Soccol, D. Singh, and R. Mohan (2000) Advances in microbial amylases. Biotechnol. Appl. Biochem. 31: 135–152.CrossRefGoogle Scholar
  2. 2.
    Selvakumar, P. and A. Pandey (1999) Solid state fermentation for the synthesis of inulinase from Staphy-lococcus sp. and Kluyveromyces marxianus. Process Biochem. 34: 851–855.CrossRefGoogle Scholar
  3. 3.
    Vandersall, A. S., R. G. Cameron, C. J. Nairn, G. Yelenosky, and R. J. Wodzinski (1995) Identification, characterization, and partial purification of glucoamylase from Aspergillus niger (syn A. ficuum) NRRL 3135. Prep. Biochem. 25: 29–55.CrossRefGoogle Scholar
  4. 4.
    Selvakumar, P., L. Ashakumary, A. Helen, and A. Pandey (1996) Purification and characterization of glucoamylase produced by Aspergillus niger in solid state fermentation. Lett. Appl. Microbiol. 23: 403–406.CrossRefGoogle Scholar
  5. 5.
    Wanderley, K. J., F. A. G. Torres, L. M. P. Moraes, and C. J. Ulhoa (2004) Biochemical characterization of α-amylase from the yeast Cryptococcus flavus. FEMS Microbiol. Lett. 231: 165–169.CrossRefGoogle Scholar
  6. 6.
    Bernfeld, P. (1955) Amylase α and β. pp. 149–158. In: S. P. Colowick and N. O. Kaplan (eds.). Methods in Enzymology. Academic Press, New York, NY, USA.CrossRefGoogle Scholar
  7. 7.
    Stryer, L. (1975) Biochemistry. 2nd ed., W.H. Freeman and Company, New York, NY, USA.Google Scholar
  8. 8.
    Palit, S. and R. Banerjee (2001) Optimization of extraction parameters for recovery of α-amylase from the fermented bran of Bacillus circulans GRS313. Braz. Arch. Biol. Technol. 44: 107–111.CrossRefGoogle Scholar
  9. 9.
    Castilho, L. R., T. L. M. Alves, and R. A. Medronho (1999) Recovery of pectolytic enzymes produced by solid state culture of Aspergillus niger. Process Biochem. 34: 181–186.CrossRefGoogle Scholar
  10. 10.
    Maron, S. H. and C. F. Prutton (1965) Principles of Physical Chemistry. 4th ed. Oxford and IBH Publishing Co. Pvt. Ltd., New Delhi, India.Google Scholar
  11. 11.
    Mohamed, S. A., A. S. Fahmy, and T. M. Mohamed (2005) Carbohydrases in camel (Camelus dromedarius) pancreas. Purification and characterization of glucoamylase. Comp. Biochem. Physiol. B 140: 73–80.CrossRefGoogle Scholar
  12. 12.
    Minami, N. M. and B. V. Kilikian (1998) Separation and purification of glucoamylase in aqueous two-phase systems by a two-step extraction. J. Chromatogr. B 711: 309–312.CrossRefGoogle Scholar
  13. 13.
    Hayashida, S. and Y. Teramoto (1986) Production and characteristics of raw-starch-digesting α-amylase from a protease-negative Aspergillus ficum mutant. Appl. Environ. Microbiol. 52: 1068–1073.Google Scholar
  14. 14.
    Paszczyński, A., I. Miedziak, J. Łobarzewski, J. Kochmańska, and J. Trojanowski (1982) A simple method of affinity chromatography for the purification of glucoamylase obtained from Aspergillus niger C. FEBS Lett. 149: 63–66.CrossRefGoogle Scholar
  15. 15.
    Hayashida, S. and P. Q. Flor (1981) Raw starch-digestive glucoamylase productivity of protease-less mutant from Aspergillus awamori var. kawachi. Agric. Biol. Chem. 45: 2675–2681.Google Scholar

Copyright information

© The Korean Society for Biotechnology and Bioengineering and Springer-Verlag Berlin Heidelberg GmbH 2009

Authors and Affiliations

  1. 1.Biotechnology Section, Applied Mechanics DepartmentMotilal Nehru National Institute of TechnologyAllahabadIndia
  2. 2.Agriculture and food Engineering Department, Microbial Biotechnology and Downstream Processing LaboratoryIndian Institute of TechnologyKharagpurIndia

Personalised recommendations