Skip to main content
Log in

Enhancement of nitric oxide solubility using Fe(II)EDTA and its removal by green algae Scenedesmus sp.

  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

A photoautotrophic cultivation of green algae Scenedesmus cells was used for the removal of nitric oxide (NO) from a model flue gas mixture. In an attempt to improve the solubility of NO in the culture broth, the addition of Fe(II)EDTA to the cultivation was investigated. The addition of Fe(II)EDTA greatly enhanced NO-dissolution in the culture broth and subsequently increased the algal-uptake of NO. NO was assimilated as a source of nitrogen for the growth of Scenedesmus cells since there was a steady increase in cell density with no other nitrogen source in the culture except the incoming NO. 40–45% of NO removal was maintained for more than 12 days with the addition of 5 mM Fe(II)EDTA in a 1-L air-lift type photobioreactor system fed with 300 ppm of NO gas at a rate of 0.3 wm. However, the NO-dissolution-enhancing capacity of Fe(II)EDTA did not reach its full potential due to its oxidation to Fe(III)EDTA, possibly induced by molecular oxygen that evolved from algal photosynthesis, and subsequent loss of chelating capabilities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fritz, A. and V. Pitchon (1997) The current state of research on automotive lean NOx catalysis. Appl. Catal. B 13: 1–25.

    Article  CAS  Google Scholar 

  2. Cant, N. W. and I. O. Y. Liu (2000) The mechanism of the selective reduction of nitrogen oxides by hydrocarbons on zeolite catalysts. Catal. Today 63: 133–146.

    Article  CAS  Google Scholar 

  3. Jin, Y., M. C. Veiga, and C. Kennes (2005) Bioprocesses for the removal of nitrogen oxides from polluted air. J. Chem. Technol. Biotechnol. 80: 483–494.

    Article  CAS  Google Scholar 

  4. Nagase, H., K. I. Yoshihara, K. Eguchi, Y. Okamoto, S. Murasaki, R. Yamashita, K. Hirata, and K. Miyamoto (2001) Uptake pathway and continuous removal of nitric oxide from flue gas using microalgae. Biochem. Eng. J. 7: 241–246.

    Article  CAS  Google Scholar 

  5. Yoshihara, K. I., H. Nagase, K. Eguchi, K. Hirata, and K. Miyamoto (1996) Biological elimination of nitric oxide and carbon dioxide from flue gas by marine microalga NOA-113 cultivated in a long tubular photobioreactor. J. Ferment. Bioeng. 82: 351–354.

    Article  CAS  Google Scholar 

  6. Lee, J. S. and J. P. Lee (2003) Review of advances in biological CO2 mitigation technology. Biotechnol. Bioprocess Eng. 8: 354–359.

    Article  CAS  Google Scholar 

  7. Olaizola, M. (2003) Microalgal removal of CO2 from flue gases: Changes in medium pH and flue gas composition do not appear to affect the photochemical yield of microalgal cultures. Biotechnol. Bioprocess Eng. 8: 360–367.

    Article  CAS  Google Scholar 

  8. Wijanarko, A., Dianursanti, M. Gozan, S. M. K. Andika, P. Widiastuti, H. Hermansyah, A. B. Witarto, K. Asami, R. W. Soemantojo, K. Ohtaguchi, and S. K. Song (2006) Enhancement of carbon dioxide fixation by alteration of illumination during Chlorella vulgaris-Buintenzorg’s growth. Biotechnol. Bioprocess Eng. 11: 484–488.

    Article  CAS  Google Scholar 

  9. Negoro, M., N. Shioji, K. Miyamoto, and Y. Miura (1991) Growth of microalgae in high CO2 gas and effects of SOx and NOx. Appl. Biochem. Biotechnol. 29: 877–886.

    Article  Google Scholar 

  10. Melis, A. and T. Happe (2001) Hydrogen production: Green algae as a source of energy. Plant Physiol. 127: 740–748.

    Article  CAS  Google Scholar 

  11. Hur, W. and Y. K. Chung (2006) An artificial neural network for biomass estimation from automatic pH control signal. Biotechnol. Bioprocess Eng. 11: 351–356.

    Article  CAS  Google Scholar 

  12. van der Maas, P., T. van de Sandt, B. Klapwijk, and P. Lens (2003) Biological reduction of nitric oxide in aqueous Fe(II)EDTA solutions. Biotechnol. Prog. 19: 1323–1328.

    Article  CAS  Google Scholar 

  13. Doucha, J., F. Straka, and K. Livansky (2005) Utilization of flue gas for cultivation of microalgae (Chlorella sp.) in an outdoor open thin-layer photobioreactor. J. Appl. Phycol. 17: 403–412.

    Article  Google Scholar 

  14. Matsumoto, H., A. Hamasaki, and N. Sioji (1997) Influence of CO2, SO2 and NO in flue gas on microalgae productivity. J. Chem. Eng. Jpn. 30: 620–624.

    Article  CAS  Google Scholar 

  15. Demmink, J. F., I. C. F. van Gils, and A. A. C. M. Beenackers (1997) Absorption of nitric oxide into aqueous solutions of ferrous chelates accompanied by instantaneous reaction. Ind. Eng. Chem. Res. 36: 4914–4927.

    Article  CAS  Google Scholar 

  16. Kleifges, K. H., G. Kreysa, and K. Juttner (1997) An indirect electrochemical process for the removal of NOx from industrial waste gases. J. Appl. Electrochem. 27: 1012–1020.

    Article  CAS  Google Scholar 

  17. Kumaraswamy, R., U. van Dongen, J. G. Kuenen, W. Abma, M. C. M. van Loosdrecht, and G. Muyzer (2005) Characterization of microbial communities removing nitrogen oxides from flue gas: the BioDeNOx process. Appl. Environ. Microbiol. 71: 6345–6352.

    Article  CAS  Google Scholar 

  18. van der Maas, P., L. Harmsen, S. Weelink, B. Klapwijk, and P. Lens (2004) Denitrification in aqueous FeEDTA solutions. J. Chem. Technol. Biotechnol. 79: 835–841.

    Article  CAS  Google Scholar 

  19. Roden, E. E. and D. R. Lovley (1993) Dissimilatory Fe(III) reduction by the marine microorganism Desulfu-romonas acetoxidans. Appl. Environ. Microbiol. 59: 734–742.

    CAS  Google Scholar 

  20. van der Maas, P., P. van den Brink, S. Utomo, B. Klapwijk, and P. Lens (2006) NO removal in continuous BioDeNOx reactors: Fe(II)EDTA2− regeneration, biomass growth, and EDTA degradation. Biotechnol. Bioeng. 94: 575–584.

    Article  CAS  Google Scholar 

  21. Andersen, R. A. (2005) Algal Culturing Techniques. pp. 439–440. Elsevier Academic Press, UK.

    Google Scholar 

  22. Jin, H. F., B. R. Lim, and K. Lee (2006) Influence of nitrate feeding on carbon dioxide fixation by microalgae. J. Environ. Sci. Health A 41: 2813–2824.

    CAS  Google Scholar 

  23. Ministry of Environment (2000) Standard Methods of Water Quality. Sections 4–12 & 4–13. The Ministry of Environment, Korea.

    Google Scholar 

  24. van der Maas, P., P. van den Bosch, B. Klapwijk, and P. Lens (2005) Nox removal from flue gas by an integrated physicochemical absorption and biological denitrification process. Biotechnol. Bioeng. 90: 433–441.

    Article  CAS  Google Scholar 

  25. Buisman, C. J. N., H. Dijkman, P. L. Verbraak, and A. J. D. Hartog (1999) Process for purifying flue gas containing nitrogen oxides. US Patent 5,891,408.

  26. Hishinuma, Y., R. Kaji, H. Akimoto, F. Nakajima, T. Mori, T. Kamo, Y. Arikawa, and S. Nozawa (1979) Reversible binding of NO to Fe(II)EDTA. Bull. Chem. Soc. Jpn. 52: 2863–2865.

    Article  CAS  Google Scholar 

  27. Zang, V., M. Kotowski, and R. van Eldik (1988) Kinetics and mechanism of the formation of FeII(edta)NO in the system FeII(edta)/NO/HONO/NO 2 in aqueous solutions. Inorg. Chem. 27: 3279–3283.

    Article  CAS  Google Scholar 

  28. Hong, S. J. and C. G. Lee (2007) Evaluation of central metabolism based on a genomic database of Synechocystis PCC6803. Biotechnol. Bioprocess Eng. 12: 165–173.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kisay Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jin, HF., Santiago, D.E.O., Park, J. et al. Enhancement of nitric oxide solubility using Fe(II)EDTA and its removal by green algae Scenedesmus sp.. Biotechnol Bioproc E 13, 48–52 (2008). https://doi.org/10.1007/s12257-007-0164-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-007-0164-z

Keywords

Navigation