Skip to main content
Log in

KIOM-4 protects RINm5F pancreatic β-Cells against streptozotocin induced oxidative stress in vitro

  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

The effect of KIOM-4, a combination of four plant extracts was assessed on streptozotocin (STZ) treated rat insulinoma (RIN5mF) cells in vitro. KIOM-4 scavenged the 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical and intracellular reactive oxygen species (ROS) induced by STZ. KIOM-4 prevented the STZ-induced DNA damage, which is detected using comet assay, Western blot and lipid peroxidation assays. KIOM-4 inhibited the STZ induced apoptosis, therefore protecting from cell death. Additionally, KIOM-4 induced the activation of catalase and extracellular regulated kinase (ERK). These results suggest that KIOM-4 protects RINm5F cells via radical scavenging activity, the activation of catalase and ERK against STZ induced oxidative stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kinloch, R. A., J. M. Treherne, L. M. Furness, and I. Hajimohamadreza (1999) The pharmacology of apoptosis. Trends Pharmacol. Sci 20: 35–42.

    Article  CAS  Google Scholar 

  2. Latha, M., L. Pari, S. Sitasawad, and R. Bhonde (2004) Scoparia dulcis, a traditional antidiabetic plant, protects against streptozotocin induced oxidative stress and apoptosis in vitro and in vivo. J. Biochem. Mol. Toxicol. 18: 261–272.

    Article  CAS  Google Scholar 

  3. Lukic, M. L., S. Stosic-Grujicic, and A. Shahin (1998) Effector mechanisms in low-dose streptozotocin-induced diabetes. Dev. Immunol. 6: 119–128.

    CAS  Google Scholar 

  4. Spinas, G. A. (1999) The dual role of nitric oxide in islet beta-cells. News Physiol. Sci. 14: 49–54.

    CAS  Google Scholar 

  5. Schmezer, P., C. Eckert, and U. M. Liegibel (1994) Tissue-specific induction of mutations by streptozotocin in vivo. Mutat. Res. 307: 495–499.

    CAS  Google Scholar 

  6. Saito, J., Y. Sakai, and H. Nagase (2006) In vitro anti-mutagenic effect of magnolol against direct and indirect mutagens. Mutat. Res. 609: 68–73.

    CAS  Google Scholar 

  7. Park, E. J., S. Y. Kim, Y. Z. Zhao, and D. H. Sohn (2006) Honokiol reduces oxidative stress, c-jun-NH2-terminal kinase phosphorylation and protects against glycochenodeoxycholic acid-induced apoptosis in primary cultured rat hepatocytes. Planta Med. 72: 661–664.

    Article  CAS  Google Scholar 

  8. Cao, A. H., L. T. Vo, and R. G. King (2005) Honokiol protects against carbon tetrachloride induced liver damage in the rat. Phytother. Res. 19: 932–937.

    Article  CAS  Google Scholar 

  9. Lin, Y. R., H. H. Chen, C. H. Ko, and M. H. Chan (2006) Neuroprotective activity of honokiol and magnolol in cerebellar granule cell damage. Eur. J. Pharmacol. 537: 64–69.

    Article  CAS  Google Scholar 

  10. Lee, J., E. Jung, J. Park, K. Jung, S. Lee, S. Hong, J. Park, E. Park, J. Kim, S. Park, and D. Park (2005) Anti-inflammatory effects of magnolol and honokiol are mediated through inhibition of the downstream pathway of MEKK-1 in NF-kappaB activation signaling. Planta Med. 71: 338–343.

    Article  CAS  Google Scholar 

  11. Miyazawa, M., K. Sakano, S. Nakamura, and H. Kosaka (2001) Antimutagenic activity of isoflavone from Pueraria lobata. J. Agric. Food Chem. 49: 336–341.

    Article  CAS  Google Scholar 

  12. Lee, K. T., I. C. Sohn, D. H. Kim, J. W. Choi, S. H. Kwon, and H. J. Park (2000) Hypoglycemic and hypolipidemic effects of tectorigenin and kaikasaponin III in the streptozotocin-Induced diabetic rat and their antioxidant activity in vitro. Arch. Pharm. Res. 23: 461–466.

    Article  CAS  Google Scholar 

  13. Lee, K. T., I. C. Sohn, Y. K. Kim, J. H. Choi, J. W. Choi, H. J. Park, Y. Itoh, and K. Miyamoto (2001) Tectorigenin, an isoflavone of Pueraria thunbergiana Benth., induces differentiation and apoptosis in human promye-locytic leukemia HL-60 cells. Biol. Pharm. Bull. 24: 1117–1121.

    Article  CAS  Google Scholar 

  14. Wang, Z. Y. and D. W. Nixon (2001) Licorice and cancer. Nutr. Cancer 39: 1–11.

    Article  CAS  Google Scholar 

  15. Ahn, M. J., C. Y. Kim, J. S. Lee, T. G. Kim, S. H. Kim, C. K. Lee, B. B. Lee, C. G. Shin, H. Huh, and J. Kim (2002) Inhibition of HIV-1 integrase by galloyl glucoses from Terminalia chebula and flavonol glycoside gallates from Euphorbia pekinensis. Planta Med. 68: 457–459.

    Article  CAS  Google Scholar 

  16. Kong, L. Y., Y. Li, X. L. Wu, and Z. D. Min (2002) Cytotoxic diterpenoids from Euphorbia pekinensis. Planta Med. 68: 249–252.

    Article  CAS  Google Scholar 

  17. Kang, K. A., S. Chae, K. H. Lee, R. Zhang, M. S. Jung, H. J. You, J. S. Kim, and J. W. Hyun (2005) Antioxidant effect of homogentisic acid on hydrogen peroxide induced oxidative stress in human lung fibroblast cells. Biotechnol. Bioprocess Eng. 10: 556–563.

    CAS  Google Scholar 

  18. Rosenkranz, A. R., S. Schmaldienst, K. M. Stuhlmeier, W. Chen, W. Knapp, and G. J. Zlabinger (1992) A microplate assay for the detection of oxidative products using2′,7′-dichlorofluorescein-diacetate. J. Immunol. Methods 156: 39–45.

    Article  CAS  Google Scholar 

  19. Singh, N. P. (2000) Microgels for estimation of DNA strand breaks, DNA protein crosslinks and apoptosis. Mutat. Res. 455: 111–127.

    CAS  Google Scholar 

  20. Rajagopalan, R., S. K. Ranjan, and C. K. Nair (2003) Effect of vinblastine sulfate on gamma-radiation-induced DNA single-strand breaks in murine tissues. Mutat. Res. 536: 15–25.

    CAS  Google Scholar 

  21. Ohkawa, H., N. Ohishi, and K. Yagi (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal. Biochem. 95: 351–358.

    Article  CAS  Google Scholar 

  22. Choi, J. H., S. K. Yoon, K. H. Lee, M. S. Seo, D. H. Kim, S. B. Hong, J. Y. Kim, H. D. Paik, and C. H. Kim (2006) Antitumor activity of cell suspension culture of green tea seed (Camellia sinensis L.). Biotechnol. Bioprocess Eng. 11: 396–401.

    CAS  Google Scholar 

  23. Seo, Y., S. H. Kang, H. J. Lee, Y. A. Kim, H. J. Youn, B. J. Lee, and H. Chung (2006) In vitro screening of seaweed extract on the proliferation of mouse spleen and thymus cell. Biotechnol. Bioprocess Eng. 11: 160–163.

    CAS  Google Scholar 

  24. Carrillo, M. C., S. Kanai, M. Nokubo, and K. Kitani (1991) Deprenyl induces activities of both superoxide dismutase and catalase but not of glutathione peroxidase in the striatum of young male rats. Life Sci. 48: 517–521.

    Article  CAS  Google Scholar 

  25. Rogakou, E. P., D. R. Pilch, A. H. Orr, V. S. Ivanova, and W. M. Bonner (1998) DNA double-stranded breaks induce histone H2AX phosphorylation on serine 139. J. Biol. Chem. 273: 5858–5868.

    Article  CAS  Google Scholar 

  26. Pages, G., P. Lenormand, G. L’Allemain, J. C. Chambard, S. Meloche, and J. Pouyssegur (1993) Mitogen-activated protein kinases p42mapk and p44mapk are required for fibroblast proliferation. Proc. Natl. Acad. Sci. USA 90: 319–323.

    Article  Google Scholar 

  27. Baynes, J. W. (1991) Role of oxidative stress in development of complications in diabetes. Diabetes 40: 405–412.

    Article  CAS  Google Scholar 

  28. Coskun, O., M. Kanter, A. Korkmaz, and S. Oter (2005) Quercetin, a flavonoid antioxidant, prevents and protects streptozotocin-induced oxidative stress and beta-cell damage in rat pancreas. Pharmacol. Res. 51:117–123.

    Article  CAS  Google Scholar 

  29. Eum, W. S., I. S. Choung, M. Z. Li, J. H. Kang, D. W. Kim, J. Park, H. Y. Kwon, and S. Y. Choi (2004) HIV-1 Tat-mediated protein transduction of Cu,Zn-superoxide dismutase into pancreatic beta cells in vitro and in vivo. FreeRadic. Biol. Med. 37: 339–349.

    Article  CAS  Google Scholar 

  30. Bolzan, A. D. and M. S. Bianchi (2002) Genotoxicity of streptozotocin. Mutat. Res. 512: 121–134.

    Article  CAS  Google Scholar 

  31. Szkudelski, T. (2001) The mechanism of alloxan and streptozotocin action in B cells of the rat pancreas. Physiol. Res. 50: 537–546.

    CAS  Google Scholar 

  32. Chen, H., E. C. Carlson, L. Pellet, J. T. Moritz, and P. N. Epstein (2001) Overexpression of metallothionein in pancreatic beta-cells reduces streptozotocin-induced DNA damage and diabetes. Diabetes 50: 2040–2046.

    Article  CAS  Google Scholar 

  33. Andersson, A. K. and S. Sandler (2001) Melatonin protects against streptozotocin, but not interleukin-1beta-induced damage of rodent pancreatic beta-cells. J. Pineal Res. 30: 157–165.

    Article  CAS  Google Scholar 

  34. Vannucchi, H., W. F. Araujo, M. M. Bernardes, and A. A. Jordao Junior (1999) Effect of different vitamin E levels on lipid peroxidation in streptozotocin-diabetic rats. Int. J. Vitam. Nutr. Res. 69: 250–254.

    Article  CAS  Google Scholar 

  35. McCubrey, J. A., W. S. May, V. Duronio, and A. Mufson (2000) Serine/threonine phosphorylation in cytokine signal transduction. Leukemia 14: 9–21.

    Article  CAS  Google Scholar 

  36. Robinson, M. J. and M. H. Cobb (1997) Mitogen-activated protein kinase pathways. Curr. Opin. Cell Biol. 9:180–186.

    Article  CAS  Google Scholar 

  37. Widmann, C., S. Gibson, M. B. Jarpe, and G. L. Johnson (1999) Mitogen-activated protein kinase: conservation of a three kinase module from yeastto human. Physiol. Rev. 79: 143–180.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin Won Hyun.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kang, K.A., Kim, J.S. & Hyun, J.W. KIOM-4 protects RINm5F pancreatic β-Cells against streptozotocin induced oxidative stress in vitro . Biotechnol Bioproc E 13, 150–157 (2008). https://doi.org/10.1007/s12257-006-0121-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-006-0121-2

Keywords

Navigation