Skip to main content
Log in

Treatment decision based on molecular profiling in metastatic colorectal cancer with a focus on RAS pathway mutations

  • short review
  • Published:
memo - Magazine of European Medical Oncology Aims and scope Submit manuscript

Summary

Agents targeting vascular endothelial growth factor (VEGF) or epidermal growth factor receptor (EGFR) are part of systemic therapy in advanced colorectal cancer. It is well known that only certain molecular subpopulations profit from EGFR antibodies, restricting those therapeutics to a smaller fraction of patients. Recently investigated, the monitoring of temporally changing RAS mutational status by liquid biopsy might allow the application of EGFR antibodies to an additional subset of patients. In addition, KRAS G12C inhibitors combined with anti-EGFR antibodies are currently under investigation in clinical trials and could provide another effective therapy in case of KRAS G12C mutations. Beyond RAS, therapy guided by microsatellite instability (MSI) status, BRAF mutations, HER2 overexpression and NTRK fusions are welcome additions to targeted treatment in advanced colorectal cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. In the following, under the generalized term “RAS mutated”, named mutations will be subsided.

References

  1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA A Cancer J Clin. 2021;71(3):209–49. https://doi.org/10.3322/caac.21660.

    Article  Google Scholar 

  2. Dekker E, Tanis PJ, Vleugels JLA, Kasi PM, Wallace MB. Colorectal cancer. Lancet. 2019;394(10207):1467–80. https://doi.org/10.1016/S0140-6736(19)32319-0.

    Article  PubMed  Google Scholar 

  3. Hurwitz H, Fehrenbacher L, Novotny W, Cartwright T, Hainsworth J, Heim W, et al. Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N Engl J Med. 2004;350(23):2335–42. https://doi.org/10.1056/NEJMoa032691.

    Article  CAS  PubMed  Google Scholar 

  4. Van Cutsem E, Köhne CH, Hitre E, Zaluski J, Chang Chien CR, Makhson A, et al. Cetuximab and chemotherapy as initial treatment for metastatic colorectal cancer. N Engl J Med. 2009;360(14):1408–17. https://doi.org/10.1056/NEJMoa0805019.

    Article  PubMed  Google Scholar 

  5. Zheng B, Wang X, Wei M, Wang Q, Li J, Bi L, et al. First-line cetuximab versus bevacizumab for RAS and BRAF wild-type metastatic colorectal cancer: a systematic review and meta-analysis. BMC Cancer. 2019;19(1):1–12. https://doi.org/10.1186/s12885-019-5481-z.

    Article  Google Scholar 

  6. Karapetis CS, Khambata-Ford S, Jonker DJ, O’Callaghan CJ, Tu D, Tebbutt NC, et al. K‑ras mutations and benefit from cetuximab in advanced colorectal cancer. N Engl J Med. 2008;359(17):1757–65.

    Article  CAS  PubMed  Google Scholar 

  7. van Cutsem E, Köhne C‑H, Hitre E, Zaluski J, Chang Chien C‑R, Makhson A, et al. Cetuximab and chemotherapy as initial treatment for metastatic colorectal cancer. N Engl J Med. 2009;360(14):1408–17.

    Article  PubMed  Google Scholar 

  8. de Roock W, Claes B, Bernasconi D, de Schutter J, Biesmans B, Fountzilas G, et al. Effects of KRAS, BRAF, NRAS, and PIK3CA mutations on the efficacy of cetuximab plus chemotherapy in chemotherapy-refractory metastatic colorectal cancer: a retrospective consortium analysis. Lancet Oncol. 2010;11(8):753–62.

    Article  PubMed  Google Scholar 

  9. Douillard J‑Y, Oliner KS, Siena S, Tabernero J, Burkes R, Barugel M, et al. Panitumumab-FOLFOX4 treatment and RAS mutations in colorectal cancer. N Engl J Med. 2013;369(11):1023–34.

    Article  CAS  PubMed  Google Scholar 

  10. Rowland A, Dias MM, Wiese MD, Kichenadasse G, McKinnon RA, Karapetis CS, et al. Meta-analysis of BRAF mutation as a predictive biomarker of benefit from anti-EGFR monoclonal antibody therapy for RAS wild-type metastatic colorectal cancer. Br J Cancer. 2015;112(12):1888.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Cohen R, Liu H, Fiskum J, Adams R, Chibaudel B, Maughan TS, et al. BRAF V600E mutation in first-line metastatic colorectal cancer: an analysis of individual patient data from the ARCAD database. J Natl Cancer Inst. 2021;113(10):1386–95. https://doi.org/10.1093/jnci/djab042.

    Article  CAS  PubMed  Google Scholar 

  12. Pietrantonio F, Petrelli F, Coinu A, di Bartolomeo M, Borgonovo K, Maggi C, et al. Predictive role of BRAF mutations in patients with advanced colorectal cancer receiving cetuximab and panitumumab: a meta-analysis. Eur J Cancer. 2015;51(5):587–94.

    Article  CAS  PubMed  Google Scholar 

  13. Stintzing S, Heinrich K, Tougeron D, Modest DP, Schwaner I, Euker J, et al. Randomized study to investigate FOLFOXIRI plus either bevacizumab or cetuximab as first-line treatment of BRAF V600E-mutant mCRC: the phase-II FIRE‑4.5 study (AIO KRK-0116). J Clin Oncol. 2021;39(15_suppl):3502. https://doi.org/10.1200/JCO.2021.39.15_suppl.3502.

    Article  Google Scholar 

  14. Parseghian CM, Napolitano S, Loree JM, Kopetz S. Mechanisms of innate and acquired resistance to anti-EGFR therapy: a review of current knowledge with a focus on rechallenge therapies. Clin Cancer Res. 2019;25(23):6899.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Arnold D, Lueza B, Douillard J‑Y, Peeters M, Lenz H‑J, Venook A, et al. Prognostic and predictive value of primary tumour side in patients with RAS wild-type metastatic colorectal cancer treated with chemotherapy and EGFR directed antibodies in six randomized trials. Ann Oncol. 2017;28(8):1713.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Boeckx N, Janssens K, Van Camp G, et al. The predictive value of primary tumor location in patients with metastatic colorectal cancer: a systematic review. Crit Rev Oncol Hematol. 2018;121:1–10. https://doi.org/10.1016/j.critrevonc.2017.11.003.

    Article  PubMed  Google Scholar 

  17. André T, Shiu K‑K, Kim TW, Jensen BV, Jensen LH, Punt C, et al. Pembrolizumab in microsatellite-instability-high advanced colorectal cancer. N Engl J Med. 2020;383(23):2207–18.

    Article  PubMed  Google Scholar 

  18. Le DT, Kim TW, van Cutsem E, Geva R, Jäger D, Hara H, et al. Phase II open-label study of pembrolizumab in treatment-refractory, microsatellite instability-high/mismatch repair-deficient metastatic colorectal cancer: KEYNOTE-164. J Clin Oncol. 2020;38(1):11–9. https://doi.org/10.1200/JCO.19.02107.

    Article  CAS  PubMed  Google Scholar 

  19. Cremolini C, Rossini D, Antoniotti C, Pietrantonio F, Lonardi S, Salvatore L, et al. LBA20 FOLFOXIRI plus bevacizumab (bev) plus atezolizumab (atezo) versus FOLFOXIRI plus bev as first-line treatment of unresectable metastatic colorectal cancer (mCRC) patients: results of the phase II randomized AtezoTRIBE study by GONO. Ann Oncol. 2021;32:S1294–S5. https://doi.org/10.1016/j.annonc.2021.08.2094.

    Article  Google Scholar 

  20. Tabernero J, Grothey A, van Cutsem E, Yaeger R, Wasan H, Yoshino T, et al. Encorafenib plus cetuximab as a new standard of care for previously treated BRAF V600E-mutant metastatic colorectal cancer: updated survival results and subgroup analyses from the BEACON study. J Clin Oncol. 2021;39:273–84. https://doi.org/10.1200/JCO.20.02088.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Richman SD, Southward K, Chambers P, Cross D, Barrett J, Hemmings G, et al. HER2 overexpression and amplification as a potential therapeutic target in colorectal cancer: analysis of 3256 patients enrolled in the QUASAR, FOCUS and PICCOLO colorectal cancer trials. J Pathol. 2016;238(4):562–70. https://doi.org/10.1002/path.4679.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Sartore-Bianchi A, Trusolino L, Martino C, Bencardino K, Lonardi S, Bergamo F, et al. Dual-targeted therapy with trastuzumab and lapatinib in treatment-refractory, KRAS codon 12/13 wild-type, HER2-positive metastatic colorectal cancer (HERACLES): a proof-of-concept, multicentre, open-label, phase 2 trial. Lancet Oncol. 2016;17(6):738–46. https://doi.org/10.1016/S1470-2045(16)00150-9.

    Article  CAS  PubMed  Google Scholar 

  23. Meric-Bernstam F, Hurwitz H, Raghav KPS, McWilliams RR, Fakih M, VanderWalde A, et al. Pertuzumab plus trastuzumab for HER2-amplified metastatic colorectal cancer (MyPathway): an updated report from a multicentre, open-label, phase 2a, multiple basket study. Lancet Oncol. 2019;20(4):518–30. https://doi.org/10.1016/S1470-2045(18)30904-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Yoshino T, di Bartolomeo M, Raghav KPS, Masuishi T, Loupakis F, Kawakami H, et al. Trastuzumab deruxtecan (T-DXd; DS-8201) in patients (pts) with HER2-expressing metastatic colorectal cancer (mCRC): final results from a phase 2, multicenter, open-label study (DESTINY-CRC01). J Clin Oncol. 2021;39(15_suppl):3505. https://doi.org/10.1200/JCO.2021.39.15_suppl.3505.

    Article  Google Scholar 

  25. Cocco E, Scaltriti M, Drilon A. NTRK fusion-positive cancers and TRK inhibitor therapy. Nat Rev Clin Oncol. 2018;15(12):731.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Hong DS, DuBois SG, Kummar S, Farago AF, Albert CM, Rohrberg KS, et al. Larotrectinib in patients with TRK fusion-positive solid tumours: a pooled analysis of three phase 1/2 clinical trials. Lancet Oncol. 2020;21(4):531–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Diaz LA, Williams RT, Wu J, Kinde I, Hecht JR, Berlin J, et al. The molecular evolution of acquired resistance to targeted EGFR blockade in colorectal cancers. Nature. 2012;486(7404):537–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Siravegna G, Mussolin B, Buscarino M, Corti G, Cassingena A, Crisafulli G, et al. Clonal evolution and resistance to EGFR blockade in the blood of colorectal cancer patients. Nat Med. 2015;21:795–801.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Mauri G, Pizzutilo EG, Amatu A, Bencardino K, Palmeri L, Bonazzina EF, et al. Retreatment with anti-EGFR monoclonal antibodies in metastatic colorectal cancer: systematic review of different strategies. Cancer Treat Rev. 2019;73:41–53.

    Article  CAS  PubMed  Google Scholar 

  30. Cremolini C, Rossini D, Dell’Aquila E, Lonardi S, Conca E, del Re M, et al. Rechallenge for patients with RAS and BRAF wild-type metastatic colorectal cancer with acquired resistance to first-line cetuximab and irinotecan: a phase 2 single-arm clinical trial. JAMA Oncol. 2019;5(3):343–50.

    Article  PubMed  Google Scholar 

  31. Sartore-Bianchi A, Pietrantonio F, Lonardi S, Mussolin B, Rua F, Fenocchio E, et al. Phase II study of anti-EGFR rechallenge therapy with panitumumab driven by circulating tumor DNA molecular selection in metastatic colorectal cancer: the CHRONOS trial. J Clin Oncol. 2021;39(15_suppl):3506. https://doi.org/10.1200/JCO.2021.39.15_suppl.3506.

    Article  Google Scholar 

  32. ClinicalTrials.gov. Metastatic colorectal cancer (RAS-wildtype) after response to first-line treatment with FOLFIR plus cetuximab. 2021. https://clinicaltrials.gov/ct2/show/NCT02934529. Accessed 22 June 2021.

  33. Arnold D, Prager GW, Quintela A, Stein A, Vera SM, Mounedji N, et al. Beyond second-line therapy in patients with metastatic colorectal cancer: a systematic review. Ann Oncol. 2018;29:835–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Henry J, Willis J, Parseghian CM, Raghav KPS, Johnson B, Dasari A, et al. NeoRAS: incidence of RAS reversion from RAS mutated to RAS wild type. J Clin Oncol. 2020;38(4_suppl):180.

    Article  Google Scholar 

  35. Klein-Scory S, Wahner I, Maslova M, Al-Sewaidi Y, Pohl M, Mika T, et al. Evolution of RAS mutational status in liquid biopsies during first-line chemotherapy for metastatic colorectal cancer. Front Oncol. 2020;10:1115. https://doi.org/10.3389/fonc.2020.01115.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Sunakawa Y, Usher J, Satake H, Jaimes Y, Miyamoto Y, Nakamura M, et al. Gene mutation status in circulating tumor DNA (ctDNA) and first-line FOLFOXIRI plus bevacizumab (bev) in metastatic colorectal cancer (mCRC) harboring RAS mutation. Ann Oncol. 2018;29:viii181–viii2.

    Article  Google Scholar 

  37. Osumi H, Vecchione L, Keilholz U, Vollbrecht C, Alig AHS, von Einem JC, et al. NeoRAS wild-type in metastatic colorectal cancer: myth or truth?—Case series and review of the literature. Eur J Cancer. 2021;153:86–95.

    Article  CAS  PubMed  Google Scholar 

  38. Hong DS, et al. KRASG12C inhibition with sotorasib in advanced solid tumors. N Eng J Med. 2020; https://doi.org/10.1056/NEJMoa1917239.

    Article  Google Scholar 

  39. Amodio V, Yaeger R, Arcella P, Cancelliere C, Lamba S, Lorenzato A, et al. EGFR blockade reverts resistance to KRAS G12C inhibition in colorectal cancer. Cancer Discov. 2020;10:1129–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. OncologyPRO. KRYSTAL-1: adagrasib (MRTX849) as monotherapy or combined with cetuximab (Cetux) in patients (Pts) with colorectal cancer (CRC) harboring a KRASG12. 2021. https://oncologypro.esmo.org/meeting-resources/esmo-congress-2021/krystal-1-adagrasib-mrtx849-as-monotherapy-or-combined-with-cetuximab-cetux-in-patients-pts-with-colorectal-cancer-crc-harboring-a-krasg12. Accessed 7 Oct 2021.

  41. OncologyPRO. CodeBreaK 101 subprotocol H: phase Ib study evaluating combination of sotorasib (Soto), a KRASG12C inhibitor, and panitumumab (PMab), an EGFR inhib. 2021. https://oncologypro.esmo.org/meeting-resources/esmo-congress-2021/codebreak-101-subprotocol-h-phase-ib-study-evaluating-combination-of-sotorasib-soto-a-krasg12c-inhibitor-and-panitumumab-pmab-an-egfr-inhib. Accessed 7 Oct 2021.

  42. Schirripa M, Nappo F, Cremolini C, Salvatore L, Rossini D, Bensi M, et al. KRAS G12C metastatic colorectal cancer: specific features of a new emerging target population. Clin Colorectal Cancer. 2020;19(3):219–25.

    Article  PubMed  Google Scholar 

  43. Uprety D, Adjei AA. KRAS: from undruggable to a druggable cancer target. Cancer Treat Rev. 2020;89:102070. https://doi.org/10.1016/j.ctrv.2020.102070.

    Article  CAS  PubMed  Google Scholar 

  44. Roberts PJ, Der CJ. Targeting the Raf-MEK-ERK mitogen-activated protein kinase cascade for the treatment of cancer. Oncogene. 2007;26(22):3291–310.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johannes Schöche.

Ethics declarations

Conflict of interest

J. Schöche and D. Niedersüß-Beke declare that they have no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schöche, J., Niedersüß-Beke, D. Treatment decision based on molecular profiling in metastatic colorectal cancer with a focus on RAS pathway mutations. memo 15, 39–44 (2022). https://doi.org/10.1007/s12254-021-00787-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12254-021-00787-1

Keywords

Navigation