memo - Magazine of European Medical Oncology

, Volume 11, Issue 3, pp 235–240 | Cite as

Hemoglobinopathies—genetically diverse, clinically complex, and globally relevant

  • Holger Cario
short review


Hemoglobinopathies represent the most frequent monogenic disorders worldwide. Migration during recent years led to a profoundly increasing number of patients in countries where the indigenous population has not been affected. This short review will give an overview on etiology, pathogenesis, clinical features, diagnostics, and treatment of the most relevant hemoglobinopathies, i.e., the thalassemias and sickle cell disease.


Hemoglobinopathy Alpha-thalassemia Beta-thalassemia Sickle cell disease Iron overload 


Conflict of interest

H. Cario declares that he has no competing interests.


  1. 1.
    Kohne E. Hemoglobinopathies: clinical manifestations, diagnosis, and treatment. Dtsch Arztebl Int. 2011;108(31–32):532–40.PubMedPubMedCentralGoogle Scholar
  2. 2.
    HbVar. A database of human hemoglobin variants and thalassemias. 2018. Accessed: 1 Febr 2018Google Scholar
  3. 3.
    Patrinos GP, Giardine B, Riemer C, Miller W, Chui DH, Anagnou NP, et al. Improvements in the HbVar database of human hemoglobin variants and thalassemia mutations for population and sequence variation studies. Nucleic Acids Res. 2004;32:D537–D41.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Kunz JB, Cario H, Grosse R, Jarisch A, Lobitz S, Kulozik AE. The epidemiology of sickle cell disease in Germany following recent large-scale immigration. Pediatr Blood Cancer. 2017; Scholar
  5. 5.
    Taher AT, Weatherall DJ, Cappellini MD. Thalassaemia. Lancet. 2018;391(10116):155–67.CrossRefPubMedGoogle Scholar
  6. 6.
    Harteveld CL, Higgs DR. Alpha-thalassaemia. Orphanet J Rare Dis. 2010;5:13.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Cario H, Grosse R, Janssen G, Jarisch A, Meerpohl J, Strauss G. Guidelines for diagnostics and treatment of secondary iron overload in patients with congenital anemia. Klin Padiatr. 2010;222(6):399–406.CrossRefPubMedGoogle Scholar
  8. 8.
    Rund D, Rachmilewitz E. Beta-thalassemia. N Engl J Med. 2005;353(11):1135–46.CrossRefPubMedGoogle Scholar
  9. 9.
    Premawardhena A, Arambepola M, Katugaha N, Weatherall DJ. Is the beta thalassaemia trait of clinical importance? Br J Haematol. 2008;141(3):407–10.PubMedGoogle Scholar
  10. 10.
    Taher AT, Musallam KM, Cappellini MD, Weatherall DJ. Optimal management of beta thalassaemia intermedia. Br J Haematol. 2011;152(5):512–23.CrossRefPubMedGoogle Scholar
  11. 11.
    Taher A, Vichinsky E, Musallam KM, Cappellini MD, Viprakasit V, editors. Guidelines for the management of non transfusion dependent thalassemia. Nicosia: Thalassemia International Federation; 2013.Google Scholar
  12. 12.
    Algiraigri AH, Kassam A. Hydroxyurea for hemoglobin E/beta-thalassemia: a systematic review and meta-analysis. Int J Hematol. 2017;106(6):748–56.CrossRefPubMedGoogle Scholar
  13. 13.
    Cario H, Wegener M, Debatin KM, Kohne E. Treatment with hydroxyurea in thalassemia intermedia with paravertebral pseudotumors of extramedullary hematopoiesis. Ann Hematol. 2002;81(8):478–82.CrossRefPubMedGoogle Scholar
  14. 14.
    Musallam KM, Taher AT, Cappellini MD, Sankaran VG. Clinical experience with fetal hemoglobin induction therapy in patients with beta-thalassemia. Blood. 2013;121(12):2199–212.CrossRefPubMedGoogle Scholar
  15. 15.
    Motta I, Scaramellini N, Cappellini MD. Investigational drugs in phase I and phase II clinical trials for thalassemia. Expert Opin Investig Drugs. 2017;26(7):793–802.CrossRefPubMedGoogle Scholar
  16. 16.
    Cappellini MD, Cohen A, Porter J, Taher A, Viprakasit V, editors. Guidelines for the Management of Transfusion Dependent Thalassaemia (TDT). Nicosia: Thalassemia International Federation; 2014.Google Scholar
  17. 17.
    King A, Shenoy S. Evidence-based focused review of the status of hematopoietic stem cell transplantation as treatment of sickle cell disease and thalassemia. Blood. 2014;123(20):3089–94.CrossRefPubMedGoogle Scholar
  18. 18.
    Negre O, Eggimann AV, Beuzard Y, Ribeil JA, Bourget P, Borwornpinyo S, et al. Gene Therapy of the beta-Hemoglobinopathies by Lentiviral Transfer of the beta(A(T87Q))-Globin Gene. Hum Gene Ther. 2016;27(2):148–65.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Piel FB, Steinberg MH, Rees DC. Sickle cell disease. N Engl J Med. 2017;376(16):1561–73.CrossRefPubMedGoogle Scholar
  20. 20.
    Zhang D, Xu C, Manwani D, Frenette PS. Neutrophils, platelets, and inflammatory pathways at the nexus of sickle cell disease pathophysiology. Blood. 2016;127(7):801–9.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Ware RE, de Montalembert M, Tshilolo L, Abboud MR. Sickle cell disease. Lancet. 2017;390(10091):311–23.CrossRefPubMedGoogle Scholar
  22. 22.
    Hankins JS, Ware RE, Rogers ZR, Wynn LW, Lane PA, Scott JP, et al. Long-term hydroxyurea therapy for infants with sickle cell anemia: the HUSOFT extension study. Blood. 2005;106(7):2269–75.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Voskaridou E, Christoulas D, Bilalis A, Plata E, Varvagiannis K, Stamatopoulos G, et al. The effect of prolonged administration of hydroxyurea on morbidity and mortality in adult patients with sickle cell syndromes: results of a 17-year, single-center trial (LaSHS). Blood. 2010;115(12):2354–63.CrossRefPubMedGoogle Scholar
  24. 24.
    DeBaun MR, Kirkham FJ. Central nervous system complications and management in sickle cell disease. Blood. 2016;127(7):829–38.CrossRefPubMedGoogle Scholar
  25. 25.
    Metcalf B, Chuang C, Dufu K, Patel MP, Silva-Garcia A, Johnson C, et al. Discovery of GBT440, an orally bioavailable R‑state stabilizer of sickle cell hemoglobin. ACS Med Chem Lett. 2017;8(3):321–6.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Ataga KI, Kutlar A, Kanter J, Liles D, Cancado R, Friedrisch J, et al. Crizanlizumab for the prevention of pain crises in sickle cell disease. N Engl J Med. 2017;376(5):429–39.CrossRefPubMedGoogle Scholar
  27. 27.
    Telen MJ. Beyond hydroxyurea: new and old drugs in the pipeline for sickle cell disease. Blood. 2016;127(7):810–9.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Pediatrics and Adolescent MedicineUniversity Medical Center UlmUlmGermany

Personalised recommendations