JAK2V617F allele burden: innovative concept in monitoring of myeloproliferative neoplasms

  • Soheila Bagheropur
  • Ali Ehsanpour
  • Maryam Tahmasebi Birgani
  • Najmaldin Saki


Philadelphia chromosome-negative myeloproliferative neoplasms (MPNs), including polycythemia vera (PV), essential thrombocythemia (ET), and primary myelofibrosis (PMF), are characterized by mutations in genes, such as JAK2V617F, JAK2 exon12 gene and MPL. With respect to MPN-associated subclasses, each of these disorders has a different allele burden during disease treatment. Up to now, several studies have been conducted on the relationship between allele burden with specific MPN-associated phenotypic features, prognosis and disease progression. It seems that finding such a correlation would be a great contribution to faster diagnosis and effective treatment. The goal of this review is to investigate the relationship between JAK2V617 allele burden with different MPN subtypes and their different phenotypes. Allele burden is closely associated with MPN phenotype and can partially indicate the prognosis, progression and even the likelihood of disease transformation.


Allele burden JAK2 Myeloproliferative disorders 



This study is part of M.Sc thesis for Soheila Bagherpour. Special thanks to Ahvaz Jundishapur University of Medical Sciences for the financial support.

Compliance with ethical guidelines

Conflict of interest

S. Bagheropur, A. Ehsanpour, M.T. Birgani, and N. Saki declare that they have no competing interests.

Ethical standards

This article does not contain any studies with human participants or animals performed by any of the authors.


  1. 1.
    Takahashi K, Patel KP, Kantarjian H, Luthra R, Pierce S, Cortes J, et al. JAK2 p. V617F detection and allele burden measurement in peripheral blood and bone marrow aspirates in patients with myeloproliferative neoplasms. Blood. 2013;122(23):3784–6.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Guglielmelli P, Barosi G, Specchia G, Rambaldi A, Coco FL, Antonioli E, et al. Identification of patients with poorer survival in primary myelofibrosis based on the burden of JAK2V617F mutated allele. Blood. 2009;114(8):1477–83.CrossRefPubMedGoogle Scholar
  3. 3.
    Rapado I, Albizua E, Ayala R, Hernández JA, Garcia-Alonso L, Grande S, et al. Validity test study of JAK2 V617F and allele burden quantification in the diagnosis of myeloproliferative diseases. Ann Hematol. 2008;87(9):741–9.CrossRefPubMedGoogle Scholar
  4. 4.
    Larsen TS, Pallisgaard N, Møller MB, Hasselbalch HC. The JAK2 V617F allele burden in essential thrombocythemia, polycythemia vera and primary myelofibrosis-impact on disease phenotype. Eur J Haematol. 2007;79(6):508–15.CrossRefPubMedGoogle Scholar
  5. 5.
    Theocharides A, Passweg JR, Medinger M, Looser R, Li S, Hao-Shen H, et al. The allele burden of JAK2 mutations remains stable over several years in patients with myeloproliferative disorders. Haematologica. 2008;93(12):1890–3.CrossRefPubMedGoogle Scholar
  6. 6.
    Larsen TS, Pallisgaard N, de Stricker K, Møller MB, Hasselbalch HC. Limited efficacy of hydroxyurea in lowering of the JAK2 V617F allele burden. Hematology. 2009;14(1):11–5.CrossRefPubMedGoogle Scholar
  7. 7.
    Antonioli E, Carobbio A, Pieri L, Pancrazzi A, Guglielmelli P, Delaini F, et al. Hydroxyurea does not appreciably reduce JAK2 V617F allele burden in patients with polycythemia vera or essential thrombocythemia. Haematologica. 2010;95(8):1435–8.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Haslam K, Langabeer SE. Monitoring minimal residual disease in the myeloproliferative neoplasms: current applications and emerging approaches. Biomed Res Int. 2016; Scholar
  9. 9.
    Quintás-Cardama A, Abdel-Wahab O, Manshouri T, Kilpivaara O, Cortes J, Roupie A‑L, et al. Molecular analysis of patients with polycythemia vera or essential thrombocythemia receiving pegylated interferon α‑2a. Blood. 2013;122(6):893–901.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Park SH, Chi H‑S, Cho Y‑U, Jang S, Park C‑J. The allele burden of JAK2 V617F can aid in differential diagnosis of Philadelphia chromosome-negative myeloproliferative neoplasm. Blood Res. 2013;48(2):128–32.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Kreft A, Kindler T, Springer E, Kirkpatrick CJ. JAK2-V617F-mutated myeloproliferative neoplasms reveal different allele burden within hematopoietic cell lineages: a microdissection study of bone marrow trephine biopsies. Virchows Arch. 2011;459(5):521–7.CrossRefPubMedGoogle Scholar
  12. 12.
    Moliterno AR, Williams DM, Rogers O, Isaacs MA, Spivak JL. Phenotypic variability within the JAK2 V617F-positive MPD: roles of progenitor cell and neutrophil allele burdens. Exp Hematol. 2008;36(11):1480–1486.e2.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Antonioli E, Guglielmelli P, Poli G, Bogani C, Pancrazzi A, Longo G, et al. Influence of JAK2V617F allele burden on phenotype in essential thrombocythemia. Haematologica. 2008;93(1):41–8.CrossRefPubMedGoogle Scholar
  14. 14.
    Passamonti F, Rumi E, Pietra D, Della Porta MG, Boveri E, Pascutto C, et al. Relation between JAK2 (V617F) mutation status, granulocyte activation, and constitutive mobilization of CD34+ cells into peripheral blood in myeloproliferative disorders. Blood. 2006;107(9):3676–82.CrossRefPubMedGoogle Scholar
  15. 15.
    Stein BL, Williams DM, Rogers O, Isaacs MA, Spivak JL, Moliterno AR. Disease burden at the progenitor level is a feature of primary myelofibrosis: a multivariable analysis of 164 JAK2 V617F-positive myeloproliferative neoplasm patients. Exp Hematol. 2011;39(1):95–101.CrossRefPubMedGoogle Scholar
  16. 16.
    Hussein K, Bock O, Theophile K, von Neuhoff N, Buhr T, Schlué J, et al. JAK2 V617F allele burden discriminates essential thrombocythemia from a subset of prefibrotic-stage primary myelofibrosis. Exp Hematol. 2009;37(10):1186–93.CrossRefPubMedGoogle Scholar
  17. 17.
    Ferdowsi S, Atarodi K, Amirizadeh N, Toogeh G, Azarkeivan A, Shirkoohi R, et al. Expression analysis of microRNA-125 in patients with polycythemia vera and essential thrombocythemia and correlation with JAK2 allele burden and laboratory findings. Int J Lab Hematol. 2015;37(5):661–7.CrossRefPubMedGoogle Scholar
  18. 18.
    Arellano-Rodrigo E, Alvarez-Larrán A, Reverter JC, Villamor N, Colomer D, Cervantes F. Increased platelet and leukocyte activation as contributing mechanisms for thrombosis in essential thrombocythemia and correlation with the JAK2 mutational status. Haematologica. 2006;91(2):169–75.PubMedGoogle Scholar
  19. 19.
    Falanga A, Marchetti M, Vignoli A, Balducci D, Russo L, Guerini V, et al. V617F JAK-2 mutation in patients with essential thrombocythemia: relation to platelet, granulocyte, and plasma hemostatic and inflammatory molecules. Exp Hematol. 2007;35(5):702–11.CrossRefPubMedGoogle Scholar
  20. 20.
    Austin S, Lambert J. The JAK2V617F mutation and thrombosis. Br J Haematol. 2008;143(3):307–20.CrossRefPubMedGoogle Scholar
  21. 21.
    Vannucchi A, Antonioli E, Guglielmelli P, Pardanani A, Tefferi A. Clinical correlates of JAK2V617F presence or allele burden in myeloproliferative neoplasms: a critical reappraisal. Leukemia. 2008;22(7):1299–307.CrossRefPubMedGoogle Scholar
  22. 22.
    Coucelo M, Caetano G, Sevivas T, Santos SA, Fidalgo T, Bento C, et al. JAK2V617F allele burden is associated with thrombotic mechanisms activation in polycythemia vera and essential thrombocythemia patients. Int J Hematol. 2014;99(1):32–40.CrossRefPubMedGoogle Scholar
  23. 23.
    Vannucchi AM, Pieri L, Guglielmelli P. JAK2 allele burden in the myeloproliferative neoplasms: effects on phenotype, prognosis and change with treatment. Ther Adv Hematol. 2010;2(1):21–32.CrossRefGoogle Scholar
  24. 24.
    Sirhan S, Lasho TL, Hanson CA, Mesa RA, Pardanani A, Tefferi A. The presence of JAK2V617F in primary myelofibrosis or its allele burden in polycythemia vera predicts chemosensitivity to hydroxyurea. Am J Hematol. 2008;83(5):363–5.CrossRefPubMedGoogle Scholar
  25. 25.
    Alshemmari SH, Rajaan R, Ameen R, Al-Drees MA, Almosailleakh MR. JAK2V617F allele burden in patients with myeloproliferative neoplasms. Ann Hematol. 2014;93(5):791–6.CrossRefPubMedGoogle Scholar
  26. 26.
    Ancochea À, Álvarez-Larrán A, Morales-Indiano C, García-Pallarols F, Martínez-Avilés L, Angona A, et al. The role of serum erythropoietin level and jak2 v617f allele burden in the diagnosis of polycythaemia vera. Br J Haematol. 2014;167(3):411–7.CrossRefPubMedGoogle Scholar
  27. 27.
    Alchalby H, Badbaran A, Zabelina T, Kobbe G, Hahn J, Wolff D, et al. Impact of JAK2V617F mutation status, allele burden, and clearance after allogeneic stem cell transplantation for myelofibrosis. Blood. 2010;116(18):3572–81.CrossRefPubMedGoogle Scholar
  28. 28.
    Kröger N, Badbaran A, Holler E, Hahn J, Kobbe G, Bornhäuser M, et al. Monitoring of the JAK2-V617F mutation by highly sensitive quantitative real-time PCR after allogeneic stem cell transplantation in patients with myelofibrosis. Blood. 2007;109(3):1316–21.CrossRefPubMedGoogle Scholar
  29. 29.
    Lange T, Edelmann A, Siebolts U, Krahl R, Nehring C, Jakel N, et al. JAK2 p.V617F allele burden in myeloproliferative neoplasms one month after allogeneic stem cell transplantation significantly predicts outcome and risk of relapse. Haematologica. 2013;98(5):722–8.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Tefferi A, Lasho TL, Schwager SM, Steensma DP, Mesa RA, Li CY, et al. The JAK2V617F tyrosine kinase mutation in myelofibrosis with myeloid metaplasia: lineage specificity and clinical correlates. Br J Haematol. 2005;131(3):320–8.CrossRefPubMedGoogle Scholar
  31. 31.
    Nussenzveig RH, Pham HT, Perkins SL, Prchal JT, Agarwal AM, Salama ME. Increased frequency of co-existing JAK2 exon-12 or MPL exon-10 mutations in patients with low JAK2V617F allelic burden. Leuk Lymphoma. 2016;57(6):1429–35.CrossRefPubMedGoogle Scholar
  32. 32.
    Guglielmelli P, Barosi G, Pieri L, Antonioli E, Bosi A, Vannucchi AM. JAK2V617F mutational status and allele burden have little influence on clinical phenotype and prognosis in patients with post-polycythemia vera and post-essential thrombocythemia myelofibrosis. Haematologica. 2009;94(1):144–6.CrossRefPubMedGoogle Scholar
  33. 33.
    Shirane S, Araki M, Morishita S, Edahiro Y, Sunami Y, Hironaka Y, et al. Consequences of the JAK2V617F allele burden for the prediction of transformation into myelofibrosis from polycythemia vera and essential thrombocythemia. Int J Hematol. 2015;101(2):148–53.CrossRefPubMedGoogle Scholar
  34. 34.
    Passamonti F, Rumi E, Arcaini L, Boveri E, Elena C, Pietra D, et al. Prognostic factors for thrombosis, myelofibrosis, and leukemia in essential thrombocythemia: a study of 605 patients. Haematologica. 2008;93(11):1645–51.CrossRefPubMedGoogle Scholar
  35. 35.
    Vannucchi AM, Guglielmelli P. JAK2 mutation-related disease and thrombosis. Semin Thromb Hemost. 2013;39(5):496–506. Scholar
  36. 36.
    Xavier SG, Gadelha T, Pimenta G, Eugenio AM, Ribeiro DD, Gomes FM, et al. JAK2V617F mutation in patients with splanchnic vein thrombosis. Dig Dis Sci. 2010;55(6):1770–7.CrossRefPubMedGoogle Scholar
  37. 37.
    Iurlo A, Cattaneo D, Gianelli U, Fermo E, Augello C, Cortelezzi A. Molecular analyses in the diagnosis of myeloproliferative neoplasm-related splanchnic vein thrombosis. Ann Hematol. 2015;94(5):881–2.CrossRefPubMedGoogle Scholar
  38. 38.
    Stein BL, Saraf S, Sobol U, Halpern A, Shammo J, Rondelli D, et al. Age-related differences in disease characteristics and clinical outcomes in polycythemia vera. Leuk Lymphoma. 2013;54(9):1989–95.CrossRefPubMedGoogle Scholar
  39. 39.
    Stein BL, Williams DM, Wang N‑Y, Rogers O, Isaacs MA, Pemmaraju N, et al. Sex differences in the JAK2V617F allele burden in chronic myeloproliferative disorders. Haematologica. 2010;95(7):1090–7.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Yonal I, Pinarbası B, Hindilerden F, Hancer VS, Nalcaci M, Kaymakoglu S, et al. The clinical significance of JAK2V617F mutation for Philadelphia-negative chronic myeloproliferative neoplasms in patients with splanchnic vein thrombosis. J Thromb Thrombolysis. 2012;34(3):388–96.CrossRefPubMedGoogle Scholar
  41. 41.
    Cervantes F, Passamonti F, Barosi G. Life expectancy and prognostic factors in the classic BCR/ABL-negative myeloproliferative disorders. Leukemia. 2008;22(5):905–14.CrossRefPubMedGoogle Scholar
  42. 42.
    Tefferi A, Lasho TL, Schwager SM, Strand JS, Elliott M, Mesa R, et al. The clinical phenotype of wild-type, heterozygous, and homozygous JAK2V617F in polycythemia vera. Cancer. 2006;106(3):631–5.CrossRefPubMedGoogle Scholar
  43. 43.
    Vannucchi AM, Antonioli E, Guglielmelli P, Rambaldi A, Barosi G, Marchioli R, et al. Clinical profile of homozygous JAK2 617V>F mutation in patients with polycythemia vera or essential thrombocythemia. Blood. 2007;110(3):840–6.CrossRefPubMedGoogle Scholar
  44. 44.
    Silver RT, Vandris K, Wang YL, Adriano F, Jones AV, Christos PJ, et al. JAK2 V617F allele burden in polycythemia vera correlates with grade of myelofibrosis, but is not substantially affected by therapy. Leuk Res. 2011;35(2):177–82.CrossRefPubMedGoogle Scholar
  45. 45.
    Passamonti F, Rumi E, Pietra D, Elena C, Boveri E, Arcaini L, et al. A prospective study of 338 patients with polycythemia vera: the impact of JAK2 (V617F) allele burden and leukocytosis on fibrotic or leukemic disease transformation and vascular complications. Leukemia. 2010;24(9):1574–9.CrossRefPubMedGoogle Scholar
  46. 46.
    Vannucchi A, Antonioli E, Guglielmelli P, Longo G, Pancrazzi A, Ponziani V, et al. Prospective identification of high-risk polycythemia vera patients based on JAK2V617F allele burden. Leukemia. 2007;21(9):1952–9.CrossRefPubMedGoogle Scholar
  47. 47.
    Vannucchi AM, Antonioli E, Pancrazzi A, Guglielmelli P, Di Lollo S, Alterini R, et al. The clinical phenotype of patients with essential thrombocythemia harboring MPL 515W>L/K mutation. Blood. 2007;110(11):678.Google Scholar
  48. 48.
    Kinz E, Leiherer A, Lang A, Drexel H, Muendlein A. Accurate quantitation of JAK2 V617F allele burden by array-based digital PCR. Int J Lab Hematol. 2015;37(2):217–24.CrossRefPubMedGoogle Scholar
  49. 49.
    Ye S, Dhillon S, Ke X, Collins AR, Day IN. An efficient procedure for genotyping single nucleotide polymorphisms. Nucleic Acids Res. 2001;29(17):e88-8.CrossRefPubMedGoogle Scholar
  50. 50.
    Medrano RFV, de Oliveira CA. Guidelines for the tetra-primer ARMS-PCR technique development. Mol Biotechnol. 2014;56(7):599–608.PubMedGoogle Scholar
  51. 51.
    Ginzinger DG. Gene quantification using real-time quantitative PCR: an emerging technology hits the mainstream. Exp Hematol. 2002;30(6):503–12.CrossRefPubMedGoogle Scholar
  52. 52.
    Larkin P, Knoebl I, Denslow N. Differential gene expression analysis in fish exposed to endocrine disrupting compounds. Comp Biochem Physiol B, Biochem Mol Biol. 2003;136(2):149–61.CrossRefPubMedGoogle Scholar
  53. 53.
    Mujico JR, Lombardía M, Mena MC, Méndez E, Albar JP. A highly sensitive real-time PCR system for quantification of wheat contamination in gluten-free food for celiac patients. Food Chem. 2011;128(3):795–801.CrossRefGoogle Scholar
  54. 54.
    Bustin SA, Benes V, Garson JA, Hellemans J, Huggett J, Kubista M, et al. The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem. 2009;55(4):611–22.CrossRefPubMedGoogle Scholar
  55. 55.
    Iacobucci I, Lonetti A, Venturi C, Ferrari A, Papayannidis C, Ottaviani E, et al. Use of a high sensitive nanofluidic array for the detection of rare copies of BCR-ABL1 transcript in patients with Philadelphia-positive acute lymphoblastic leukemia in complete response. Leuk Res. 2014;38(5):581–5.CrossRefPubMedGoogle Scholar
  56. 56.
    Conte D, Verri C, Borzi C, Suatoni P, Pastorino U, Sozzi G, et al. Novel method to detect microRNAs using chip-based QuantStudio 3D digital PCR. BMC Genomics. 2015;16(1):1.CrossRefGoogle Scholar
  57. 57.
    Stabley DL, Harris AW, Holbrook J, Chubbs NJ, Lozo KW, Crawford TO, et al. SMN1 and SMN2 copy numbers in cell lines derived from patients with spinal muscular atrophy as measured by array digital PCR. Mol Genet Genomic Med. 2015;3(4):248–57.CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Hayden R, Gu Z, Ingersoll J, Abdul-Ali D, Shi L, Pounds S, et al. Comparison of droplet digital PCR to real-time PCR for quantitative detection of cytomegalovirus. J Clin Microbiol. 2013;51(2):540–6.CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Ha J‑S, Kim Y‑K, Jung S‑I, Jung H‑R, Chung I‑S. Correlations between Janus kinase 2 V617F allele burdens and clinicohematologic parameters in myeloproliferative neoplasms. Ann Lab Med. 2012;32(6):385–91.CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Tefferi A, Strand J, Lasho T, Knudson R, Finke C, Gangat N, et al. Bone marrow JAK2V617F allele burden and clinical correlates in polycythemia vera. Leukemia. 2007;21(9):2074–5.CrossRefPubMedGoogle Scholar
  61. 61.
    Moliterno AR, Williams DM, Rogers O, Spivak JL. Molecular mimicry in the chronic myeloproliferative disorders: reciprocity between quantitative JAK2 V617F and Mpl expression. Blood. 2006;108(12):3913–5.CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Martinez-Aviles L, Besses C, Alvarez-Larran A, Torres E, Serrano S, Bellosillo B. TET2, ASXL1, IDH1, IDH2, and c‑CBL genes in JAK2- and MPL-negative myeloproliferative neoplasms. Ann Hematol. 2012;91(4):533–41.CrossRefPubMedGoogle Scholar
  63. 63.
    Tibes R, Bogenberger JM, Benson KL, Mesa RA. Current outlook on molecular pathogenesis and treatment of myeloproliferative neoplasms. Mol Diagn Ther. 2012;16(5):269–83.CrossRefPubMedGoogle Scholar
  64. 64.
    Ha JS, Jeon DS, Kim JR, Ryoo NH, Suh JS. Analysis of the Ten-Eleven Translocation 2 (TET2) gene mutation in myeloproliferative neoplasms. Ann Clin Lab Sci. 2014;44(2):173–9.PubMedGoogle Scholar
  65. 65.
    Wang X, LeBlanc A, Gruenstein S, Xu M, Mascarenhas J, Panzera B, et al. Clonal analyses define the relationships between chromosomal abnormalities and JAK2V617F in patients with Ph-negative myeloproliferative neoplasms. Exp Hematol. 2009;37(10):1194–200.CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  • Soheila Bagheropur
    • 1
  • Ali Ehsanpour
    • 1
  • Maryam Tahmasebi Birgani
    • 2
  • Najmaldin Saki
    • 1
  1. 1.Thalassemia & Hemoglobinopathy Research Center, Research Institute of HealthAhvaz Jundishapur University of Medical SciencesAhvazIran
  2. 2.Department of Medical Genetics, School of MedicineAhvaz Jundishapur University of Medical SciencesAhvazIran

Personalised recommendations