Skip to main content

Advertisement

Log in

Role of complement in the pathogenesis of thrombotic microangiopathies

  • review
  • Published:
memo - Magazine of European Medical Oncology Aims and scope Submit manuscript

Summary

Thrombotic microangiopathies (TMAs) are rare but life-threatening disorders characterized by microvascular hemolytic anemia and acute thrombocytopenia with or without organ damage. The term TMA covers various subgroups of diseases, the pathogenesis of which is briefly summarized in this review. As highlighted here, complement activation may represent an important amalgamating process in all of these conditions, since it is able to link together activation and damage of multiple involved cell types, such as endothelial cells, platelets, and neutrophils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

ADAMTS13:

A disintegrin and metalloproteinase with a thrombospondin type 1 motif, member 13

ADAMTS13 :

The gene encoding a disintegrin and metalloproteinase with a thrombospondin type 1 motif, member 13

aHUS:

Atypical hemolytic uremic syndrome

AP:

Alternative pathway

C3 :

The gene encoding the complement component C3

CD46 :

The gene encoding the membrane cofactor protein

CFB :

The gene encoding complement factor B

CFH :

The gene encoding complement factor H

CFHR1 :

The gene encoding the complement factor H related protein-1

CFHR5 :

The gene encoding the complement factor H related protein-5

CFI :

The gene encoding complement factor I

DAF:

Decay-accelerating factor

DGKE:

Diacylglycerol kinase epsilon

DGKE :

The gene encoding diacylglycerol kinase epsilon

E. coli :

Escherichia coli

ET-1:

Endothelin-1

F1+2:

Plasma prothrombin fragment 1+2

Gb3:

Globotriaosylceramide

HSCT:

Hematopoietic stem cell transplantation

HUS:

Hemolytic uremic syndrome

L-FABP-1:

Liver fatty acid binding protein-1

LPS:

Lipopolysaccharide

MCP:

Membrane cofactor protein

NET:

Neutrophil extracellular trap

sC5b-9:

Soluble C5b-9 complex, or membrane attack complex

STEC-HUS:

Hemolytic uremic syndrome in connection to Shiga toxin-producing Escherichia coli infection

sTNFR1:

Soluble tumor necrosis factor receptor-1

Strep. :

Streptococcus pneumoniae

Stx:

Shiga toxin

sVCAM1:

Soluble vascular cell adhesion molecule‑1

T-antigen:

Thomsen-Friedenreich antigen

THBD :

The gene encoding thrombomodulin

TIMP‑1:

Tissue inhibitor of metalloproteinases‑1

TMA:

Thrombotic microangiopathy

TTP:

Thrombotic thrombocytopenic purpura

ULVWF:

Ultra-large form of von Willebrand factor

WPB:

Weibel-Palade body

References

  1. Warwicker P, et al. Genetic studies into inherited and sporadic hemolytic uremic syndrome. Kidney Int. 1998;53(4):836–44.

    Article  PubMed  CAS  Google Scholar 

  2. Szarvas N, et al. Genetic analysis and functional characterization of novel mutations in a series of patients with atypical hemolytic uremic syndrome. Mol Immunol. 2016;71:10–22.

    Article  PubMed  CAS  Google Scholar 

  3. Caprioli J, et al. Genetics of HUS: the impact of MCP, CFH, and IF mutations on clinical presentation, response to treatment, and outcome. Blood. 2006;108(4):1267–79.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Westra D, et al. Atypical hemolytic uremic syndrome and genetic aberrations in the complement factor H‑related 5 gene. J Hum Genet. 2012;57(7):459–64.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Jozsi M, et al. Factor H autoantibodies in atypical hemolytic uremic syndrome correlate with CFHR1/CFHR3 deficiency. Blood. 2008;111(3):1512–4.

    Article  PubMed  CAS  Google Scholar 

  6. Melton-Celsa AR. Shiga toxin (Stx) classification, structure, and function. Microbiol Spectr. 2014; https://doi.org/10.1128/microbiolspec.EHEC-0024-2013.

    Article  PubMed  Google Scholar 

  7. Thurman JM, et al. Alternative pathway of complement in children with diarrhea-associated hemolytic uremic syndrome. Clin J Am Soc Nephrol. 2009;4(12):1920–4.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Stahl AL, Sartz L, Karpman D. Complement activation on platelet-leukocyte complexes and microparticles in enterohemorrhagic Escherichia coli-induced hemolytic uremic syndrome. Blood. 2011;117(20):5503–13.

    Article  PubMed  CAS  Google Scholar 

  9. Westra D, et al. Serological and genetic complement alterations in infection-induced and complement-mediated hemolytic uremic syndrome. Pediatr Nephrol. 2017;32(2):297–309.

    Article  PubMed  Google Scholar 

  10. Orth D, et al. Shiga toxin activates complement and binds factor H: evidence for an active role of complement in hemolytic uremic syndrome. J Immunol. 2009;182(10):6394–400.

    Article  PubMed  CAS  Google Scholar 

  11. Arvidsson I, et al. Shiga toxin-induced complement-mediated hemolysis and release of complement-coated red blood cell-derived microvesicles in hemolytic uremic syndrome. J Immunol. 2015;194(5):2309–18.

    Article  PubMed  CAS  Google Scholar 

  12. Morigi M, et al. Alternative pathway activation of complement by Shiga toxin promotes exuberant C3a formation that triggers microvascular thrombosis. J Immunol. 2011;187(1):172–80.

    Article  PubMed  CAS  Google Scholar 

  13. Del Conde I, et al. Platelet activation leads to activation and propagation of the complement system. J Exp Med. 2005;201(6):871–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Bettoni S, et al. Interaction between multimeric von Willebrand factor and complement: a fresh look to the pathophysiology of microvascular thrombosis. J Immunol. 2017;199(3):1021–40.

    Article  PubMed  CAS  Google Scholar 

  15. Reti M, et al. Complement activation in thrombotic thrombocytopenic purpura. J Thromb Haemost. 2012;10(5):791–8.

    Article  PubMed  CAS  Google Scholar 

  16. Westwood JP, et al. Complement and cytokine response in acute Thrombotic Thrombocytopenic Purpura. Br J Haematol. 2014;164(6):858–66.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Mikes B, et al. Elevated plasma neutrophil elastase concentration is associated with disease activity in patients with thrombotic thrombocytopenic purpura. Thromb Res. 2014;133(4):616–21.

    Article  PubMed  CAS  Google Scholar 

  18. Ruiz-Torres MP, et al. Complement activation: the missing link between ADAMTS-13 deficiency and microvascular thrombosis of thrombotic microangiopathies. Thromb Haemost. 2005;93(3):443–52.

    Article  PubMed  CAS  Google Scholar 

  19. Jodele S, et al. Abnormalities in the alternative pathway of complement in children with hematopoietic stem cell transplant-associated thrombotic microangiopathy. Blood. 2013;122(12):2003–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Gloude NJ, et al. Circulating dsDNA, endothelial injury, and complement activation in thrombotic microangiopathy and GVHD. Blood. 2017;130(10):1259–66.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Yuen J, et al. NETosing neutrophils activate complement both on their own NETs and bacteria via alternative and non-alternative pathways. Front Immunol. 2016;7:137.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Farkas P, et al. Complement activation, inflammation and relative ADAMTS13 deficiency in secondary thrombotic microangiopathies. Immunobiology. 2017;222(2):119–27.

    Article  PubMed  CAS  Google Scholar 

  23. Cofiell R, et al. Eculizumab reduces complement activation, inflammation, endothelial damage, thrombosis, and renal injury markers in aHUS. Blood. 2015;125(21):3253–62.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Azukaitis K, et al. The phenotypic spectrum of nephropathies associated with mutations in diacylglycerol kinase epsilon. J Am Soc Nephrol. 2017;28(10):3066–75.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Balestracci A, et al. Blood urea nitrogen to serum creatinine ratio as a prognostic factor in diarrhea-associated hemolytic uremic syndrome: a validation study. Eur J Pediatr. 2017; https://doi.org/10.1007/s00431-017-2999-4.

    Article  PubMed  Google Scholar 

  26. Leffler J, et al. Decreased neutrophil extracellular trap degradation in Shiga toxin-associated haemolytic uraemic syndrome. J Innate Immun. 2017;9(1):12–21.

    Article  PubMed  CAS  Google Scholar 

  27. Lukasz A, et al. Serum neutrophil gelatinase-associated lipocalin (NGAL) in patients with Shiga toxin mediated haemolytic uraemic syndrome (STEC-HUS). Thromb Haemost. 2014;111(2):365–72.

    Article  PubMed  CAS  Google Scholar 

  28. Huang DT, et al. T‑antigen activation for prediction of pneumococcus-induced hemolytic uremic syndrome and hemolytic anemia. Pediatr Infect Dis J. 2006;25(7):608–10.

    Article  PubMed  Google Scholar 

  29. Szilagyi A, et al. The use of a rapid fluorogenic neuraminidase assay to differentiate acute streptococcus pneumoniae-associated hemolytic uremic syndrome (HUS) from other forms of HUS. Clin Chem Lab Med. 2015;53(4):e117–e9.

    Article  PubMed  CAS  Google Scholar 

  30. Mikes B, et al. Carboxiterminal pro-endothelin-1 as an endothelial cell biomarker in thrombotic thrombocytopenic purpura. Thromb Haemost. 2016;115(5):1034–43.

    Article  PubMed  Google Scholar 

  31. Bettoni G, et al. ADAMTS-13 activity and autoantibodies classes and subclasses as prognostic predictors in acquired thrombotic thrombocytopenic purpura. J Thromb Haemost. 2012;10(8):1556–65.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zoltán Prohászka.

Ethics declarations

Conflict of interest

E. Trojnár, Á. Szilágyi, B. Mikes, D. Csuka, G. Sinkovits, and Z. Prohászka declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Trojnár, E., Szilágyi, Á., Mikes, B. et al. Role of complement in the pathogenesis of thrombotic microangiopathies. memo 11, 227–234 (2018). https://doi.org/10.1007/s12254-017-0380-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12254-017-0380-y

Keywords

Navigation