Skip to main content
Log in

Recommendations of the Austrian Working Group on Pulmonary Pathology and Oncology for predictive molecular and immunohistochemical testing in non-small cell lung cancer

  • special report
  • Published:
memo - Magazine of European Medical Oncology Aims and scope Submit manuscript

Summary

The introduction of epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKI) in the therapy of non-small cell lung cancer (NSCLC) with activating mutations of the EGF receptor has opened a new area of lung cancer treatment strategies and led to an enthusiastic search for additional genetic aberrations. Genetic drivers such as EML4-ALK (EML4: echinoderm microtubule-associated protein-like 4; ALK: anaplastic lymphoma kinase) and proto-oncogene tyrosine protein kinase transcribed from the ROS1-gene (ROS1) rearrangements have been detected and specific treatment options have been developed. A new approach to treatment in lung cancer is immunotherapy by antibodies interfering with immune checkpoint controls. Diagnostic and predictive immunohistochemical staining and molecular tests have to follow specific rules, if applied in daily practice. The Austrian Working Group on Pulmonary Pathology and Oncology (AWGPPO) has presented an updated version of the previous recommendations published in 2013. Questions raised during the past 3 years will be addressed: selection of tissue, order of diagnostic immunohistochemical and molecular tests, “reflex” testing, the issue of resistance mechanisms, significance of liquid biopsies, and use and interpretation of antibody reactions for immune checkpoint markers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  1. Popper H, Wrba F, Gruber-Mosenbacher U, Hulla W, Pirker R, Hilbe W, Studnicka M, Mohn-Staudner A, Ploner F, Arbeitsgruppe Pulmopathologie der O‑I. Histology-based algorithm in the molecular diagnosis of mutations of the Epidernal Growth Factor Receptor (EGFR) in non-small cell lung cancer. Wien Klin Wochenschr. 2011;123:316–21.

    Article  Google Scholar 

  2. Popper HH, Gruber-Moesenbacher U, Müllauer L, Hutarew G, Vesely M, Pirker R, Hilbe W, Ploner F, Setinek U, Hulla W, Maier H, Sterlacci W, Kirchbacher K, Kolb R, Hochmair M, Webersinke G, Stacher E, Grabher P, Hernler T. Recommendations of the Austrian Working Group on Lung Pathology and Oncology for predictive molecular and immunohistochemical testing in non-small cell lung cancer. Memo. 2013;6:83–91.

    Article  Google Scholar 

  3. Travis WD, Brambilla E, Nicholson AG, Yatabe Y, Austin JH, Beasley MB, Chirieac LR, Dacic S, Duhig E, Flieder DB, Geisinger K, Hirsch FR, Ishikawa Y, Kerr KM, Noguchi M, Pelosi G, Powell CA, Tsao MS, Wistuba I, Panel WHO. The 2015 World Health Organization classification of lung tumors: impact of genetic, clinical and radiologic advances since the 2004 classification. J Thorac Oncol. 2015;10:1243–60.

    Article  Google Scholar 

  4. Cagle PT, Allen TC, Olsen RJ. Lung cancer biomarkers: present status and future developments. Arch Pathol Lab Med. 2013;137:1191–8.

    Article  CAS  Google Scholar 

  5. Lindeman NI, Cagle PT, Beasley MB, Chitale DA, Dacic S, Giaccone G, Jenkins RB, Kwiatkowski DJ, Saldivar JS, Squire J, Thunnissen E, Ladanyi M. Molecular testing guideline for selection of lung cancer patients for EGFR and ALK tyrosine kinase inhibitors: guideline from the College of American Pathologists, International Association for the Study of Lung Cancer, and Association for Molecular Pathology. J Thorac Oncol. 2013;8:823–59.

    Article  CAS  Google Scholar 

  6. Kerr KM, Bubendorf L, Edelman MJ, Marchetti A, Mok T, Novello S, O’Byrne K, Stahel R, Peters S, Felip E, Panel M, Panel M. Second ESMO consensus conference on lung cancer: pathology and molecular biomarkers for non-small-cell lung cancer. Ann Oncol. 2014;25:1681–90.

    Article  CAS  Google Scholar 

  7. Kim EY, Cho EN, Park HS, Kim A, Hong JY, Lim S, Youn JP, Hwang SY, Chang YS. Genetic heterogeneity of actionable genes between primary and metastatic tumor in lung adenocarcinoma. BMC Cancer. 2016;16:27.

    Article  CAS  Google Scholar 

  8. Bonanno L, Calabrese F, Nardo G, Calistri D, Tebaldi M, Tedaldi G, Polo V, Vuljan S, Favaretto A, Conte P, Amadori A, Rea F, Indraccolo S. Morphological and genetic heterogeneity in multifocal lung adenocarcinoma: the case of a never-smoker woman. Lung Cancer. 2016;96:52–5.

    Article  Google Scholar 

  9. Brambilla E. Lung adenocarcinoma expression profile: one more layer of heterogeneity. Eur Respir J. 2013;42:1180–2.

    Article  Google Scholar 

  10. Cai W, Lin D, Wu C, Li X, Zhao C, Zheng L, Chuai S, Fei K, Zhou C, Hirsch FR. Intratumoral heterogeneity of ALK-rearranged and ALK/EGFR Coaltered lung adenocarcinoma. J Clin Oncol. 2015;33:3701–9.

    Article  CAS  Google Scholar 

  11. Pelosi G, Pellegrinelli A, Fabbri A, Tamborini E, Perrone F, Settanni G, Busico A, Picciani B, Testi MA, Militti L, Maisonneuve P, Valeri B, Sonzogni A, Proto C, Garassino M, De Braud F, Pastorino U. Deciphering intra-tumor heterogeneity of lung adenocarcinoma confirms that dominant, branching, and private gene mutations occur within individual tumor nodules. Virchows Arch. 2016;468:651–62.

    Article  CAS  Google Scholar 

  12. Paik PK, Varghese AM, Sima CS, Moreira AL, Ladanyi M, Kris MG, Rekhtman N. Response to erlotinib in patients with EGFR mutant advanced non-small cell lung cancers with a squamous or squamous-like component. Mol Cancer Ther. 2012;11:2535–40.

    Article  CAS  Google Scholar 

  13. Geles A, Gruber-Moesenbacher U, Quehenberger F, Manzl C, Al Effah M, Grygar E, Juettner-Smolle F, Popper HH. Pulmonary mucinous adenocarcinomas: architectural patterns in correlation with genetic changes, prognosis and survival. Virchows Arch. 2015;467:675–86.

    Article  CAS  Google Scholar 

  14. Cai D, Li H, Wang R, Li Y, Pan Y, Hu H, Zhang Y, Gong R, Pan B, Sun Y, Chen H. Comparison of clinical features, molecular alterations, and prognosis in morphological subgroups of lung invasive mucinous adenocarcinoma. Onco Targets Ther. 2014;7:2127–32.

    PubMed  PubMed Central  Google Scholar 

  15. Pirker R, Pereira JR, von Pawel J, Krzakowski M, Ramlau R, Park K, de Marinis F, Eberhardt WE, Paz-Ares L, Storkel S, Schumacher KM, von Heydebreck A, Celik I, O’Byrne KJ. EGFR expression as a predictor of survival for first-line chemotherapy plus cetuximab in patients with advanced non-small-cell lung cancer: analysis of data from the phase 3 FLEX study. Lancet Oncol. 2012;13:33–42.

    Article  CAS  Google Scholar 

  16. Park K, Kim JH, Cho EK, Kang JH, Shih JY, Zimmermann AH, Lee P, Alexandris E, Puri T, Orlando M. East Asian subgroup analysis of a randomized, double-blind, phase 3 study of docetaxel and ramucirumab versus docetaxel and placebo in the treatment of stage IV non-small-cell lung cancer following disease progression after one prior platinum-based therapy (REVEL). Cancer Res Treat. 2016;48:1177. doi:10.4143/crt.2015.401.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Perol M, Ciuleanu TE, Arrieta O, Prabhash K, Syrigos KN, Goksel T, Park K, Kowalyszyn RD, Pikiel J, Lewanski CR, Thomas M, Dakhil S, Kim JH, Karaseva N, Yurasov S, Zimmermann A, Lee P, Carter GC, Reck M, Cappuzzo F, Garon EB. Quality of life results from the phase 3 REVEL randomized clinical trial of ramucirumab-plus-docetaxel versus placebo-plus-docetaxel in advanced/metastatic non-small cell lung cancer patients with progression after platinum-based chemotherapy. Lung Cancer. 2016;93:95–103.

    Article  Google Scholar 

  18. Cagle P. Revision of the CAP/IASLC/AMP molecular testing guidelines for lung caner biomarkers. Seattle: USCAP; 2016.

    Google Scholar 

  19. Zhang YG, Jin ML, Li L, Zhao HY, Zeng X, Jiang L, Wei P, Diao XL, Li X, Cao Q, Tian XX. Evaluation of ALK rearrangement in Chinese non-small cell lung cancer using FISH, immunohistochemistry, and real-time quantitative RT- PCR on paraffin-embedded tissues. PLOS ONE. 2013;8:e64821.

    Article  CAS  Google Scholar 

  20. Shaw AT, Yeap BY, Solomon BJ, Riely GJ, Gainor J, Engelman JA, Shapiro GI, Costa DB, Ou SH, Butaney M, Salgia R, Maki RG, Varella-Garcia M, Doebele RC, Bang YJ, Kulig K, Selaru P, Tang Y, Wilner KD, Kwak EL, Clark JW, Iafrate AJ, Camidge DR. Effect of crizotinib on overall survival in patients with advanced non-small-cell lung cancer harbouring ALK gene rearrangement: a retrospective analysis. Lancet Oncol. 2011;12:1004–12.

    Article  CAS  Google Scholar 

  21. Takeuchi K, Soda M, Togashi Y, Suzuki R, Sakata S, Hatano S, Asaka R, Hamanaka W, Ninomiya H, Uehara H, Lim Choi Y, Satoh Y, Okumura S, Nakagawa K, Mano H, Ishikawa Y. RET, ROS1 and ALK fusions in lung cancer. Nat Med. 2012;18:378–81.

    Article  CAS  Google Scholar 

  22. Sanders HR, Li HR, Bruey JM, Scheerle JA, Meloni-Ehrig AM, Kelly JC, Novick C, Albitar M. Exon scanning by reverse transcriptase-polymerase chain reaction for detection of known and novel EML4-ALK fusion variants in non-small cell lung cancer. Cancer Genet. 2011;204:45–52.

    Article  CAS  Google Scholar 

  23. Suehara Y, Arcila M, Wang L, Hasanovic A, Ang D, Ito T, Kimura Y, Drilon A, Guha U, Rusch V, Kris MG, Zakowski MF, Rizvi N, Khanin R, Ladanyi M. Identification of KIF5B-RET and GOPC-ROS1 fusions in lung adenocarcinomas through a comprehensive mRNA-based screen for tyrosine kinase fusions. Clin Cancer Res. 2012;18:6599–608.

    Article  CAS  Google Scholar 

  24. Li C, Fang R, Sun Y, Han X, Li F, Gao B, Iafrate AJ, Liu XY, Pao W, Chen H, Ji H. Spectrum of oncogenic driver mutations in lung adenocarcinomas from East Asian never smokers. PLOS ONE. 2011;6:e28204.

    Article  CAS  Google Scholar 

  25. Kim SM, Kwon OJ, Hong YK, Kim JH, Solca F, Ha SJ, Soo RA, Christensen JG, Lee JH, Cho BC. Activation of IL-6R/JAK1/STAT3 signaling induces De Novo resistance to irreversible EGFR inhibitors in non-small cell lung cancer with T790M resistance mutation. Mol Cancer Ther. 2012;11:2254–64.

    Article  CAS  Google Scholar 

  26. Oxnard GR, Arcila ME, Chmielecki J, Ladanyi M, Miller VA, Pao W. New strategies in overcoming acquired resistance to epidermal growth factor receptor tyrosine kinase inhibitors in lung cancer. Clin Cancer Res. 2011;17:5530–7.

    Article  CAS  Google Scholar 

  27. Costa DB, Nguyen KS, Cho BC, Sequist LV, Jackman DM, Riely GJ, Yeap BY, Halmos B, Kim JH, Janne PA, Huberman MS, Pao W, Tenen DG, Kobayashi S. Effects of erlotinib in EGFR mutated non-small cell lung cancers with resistance to gefitinib. Clin Cancer Res. 2008;14:7060–7.

    Article  CAS  Google Scholar 

  28. Gazdar AF. Activating and resistance mutations of EGFR in non-small-cell lung cancer: role in clinical response to EGFR tyrosine kinase inhibitors. Oncogene. 2009;28(Suppl 1):S24–S31.

    Article  CAS  Google Scholar 

  29. Yu HA, Arcila ME, Rekhtman N, Sima CS, Zakowski MF, Pao W, Kris MG, Miller VA, Ladanyi M, Riely GJ. Analysis of tumor specimens at the time of acquired resistance to EGFR-TKI therapy in 155 patients with EGFR-mutant lung cancers. Clin Cancer Res. 2013;19:2240–7.

    Article  CAS  Google Scholar 

  30. Chaft JE, Arcila ME, Paik PK, Lau C, Riely GJ, Pietanza MC, Zakowski MF, Rusch V, Sima CS, Ladanyi M, Kris MG. Coexistence of PIK3CA and other oncogene mutations in lung adenocarcinoma-rationale for comprehensive mutation profiling. Mol Cancer Ther. 2012;11:485–91.

    Article  CAS  Google Scholar 

  31. Yano S, Takeuchi S, Nakagawa T, Yamada T. Ligand-triggered resistance to molecular targeted drugs in lung cancer: roles of hepatocyte growth factor and epidermal growth factor receptor ligands. Cancer Sci. 2012;103:1189–94.

    Article  CAS  Google Scholar 

  32. Kosaka T, Yamaki E, Mogi A, Kuwano H. Mechanisms of resistance to EGFR TKIs and development of a new generation of drugs in non-small-cell lung cancer. J Biomed Biotechnol. 2011;2011:165214.

    PubMed  PubMed Central  Google Scholar 

  33. Xie M, Zhang L, He CS, Xu F, Liu JL, Hu ZH, Zhao LP, Tian Y. Activation of Notch-1 enhances epithelial-mesenchymal transition in gefitinib-acquired resistant lung cancer cells. J Cell Biochem. 2012;113:1501–13.

    CAS  PubMed  Google Scholar 

  34. Xie M, He CS, Wei SH, Zhang L. Notch-1 contributes to epidermal growth factor receptor tyrosine kinase inhibitor acquired resistance in non-small cell lung cancer in vitro and in vivo. Eur J Cancer. 2013;49:3559–72.

    Article  CAS  Google Scholar 

  35. Rekhtman N, Pietanza MC, Hellmann MD, Naidoo J, Arora A, Won H, Halpenny DF, Wang H, Tian SK, Litvak AM, Paik PK, Drilon AE, Socci N, Poirier JT, Shen R, Berger MF, Moreira AL, Travis WD, Rudin CM, Ladanyi M. Next-generation sequencing of pulmonary large cell neuroendocrine carcinoma reveals small cell carcinoma-like and non-small cell carcinoma-like subsets. Clin Cancer Res. 2016;22:3618. doi:10.1158/1078-0432.ccr-15-2946.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Sutherland KD, Proost N, Brouns I, Adriaensen D, Song JY, Berns A. Cell of origin of small cell lung cancer: inactivation of Trp53 and Rb1 in distinct cell types of adult mouse lung. Cancer Cell. 2011;19:754–64.

    Article  CAS  Google Scholar 

  37. Zhang S, Wang F, Keats J, Zhu X, Ning Y, Wardwell SD, Moran L, Mohemmad QK, Anjum R, Wang Y, Narasimhan NI, Dalgarno D, Shakespeare WC, Miret JJ, Clackson T, Rivera VM. Crizotinib-resistant mutants of EML4-ALK identified through an accelerated mutagenesis screen. Chem Biol Drug Des. 2011;78:999–1005.

    Article  CAS  Google Scholar 

  38. Lovly CM, Pao W. Escaping ALK inhibition: mechanisms of and strategies to overcome resistance. Sci Transl Med. 2012;4:120ps2.

    Article  Google Scholar 

  39. Katayama R, Khan TM, Benes C, Lifshits E, Ebi H, Rivera VM, Shakespeare WC, Iafrate AJ, Engelman JA, Shaw AT. Therapeutic strategies to overcome crizotinib resistance in non-small cell lung cancers harboring the fusion oncogene EML4-ALK. Proc Natl Acad Sci U S A. 2011;108:7535–40.

    Article  CAS  Google Scholar 

  40. Katayama R, Shaw AT, Khan TM, Mino-Kenudson M, Solomon BJ, Halmos B, Jessop NA, Wain JC, Yeo AT, Benes C, Drew L, Saeh JC, Crosby K, Sequist LV, Iafrate AJ, Engelman JA. Mechanisms of acquired crizotinib resistance in ALK-rearranged lung cancers. Sci Transl Med. 2012;4:120ra17.

    Article  Google Scholar 

  41. Isozaki H, Ichihara E, Takigawa N, Ohashi K, Ochi N, Yasugi M, Ninomiya T, Yamane H, Hotta K, Sakai K, Matsumoto K, Hosokawa S, Bessho A, Sendo T, Tanimoto M, Kiura K. Non-small cell lung cancer cells acquire resistance to the ALK inhibitor alectinib by activating alternative receptor tyrosine kinases. Cancer Res. 2016;76:1506–16.

    Article  CAS  Google Scholar 

  42. Ng KP, Hillmer AM, Chuah CT, Juan WC, Ko TK, Teo AS, Ariyaratne PN, Takahashi N, Sawada K, Fei Y, Soh S, Lee WH, Huang JW, Allen JC Jr., Woo XY, Nagarajan N, Kumar V, Thalamuthu A, Poh WT, Ang AL, Mya HT, How GF, Yang LY, Koh LP, Chowbay B, Chang CT, Nadarajan VS, Chng WJ, Than H, Lim LC, Goh YT, Zhang S, Poh D, Tan P, Seet JE, Ang MK, Chau NM, Ng QS, Tan DS, Soda M, Isobe K, Nothen MM, Wong TY, Shahab A, Ruan X, Cacheux-Rataboul V, Sung WK, Tan EH, Yatabe Y, Mano H, Soo RA, Chin TM, Lim WT, Ruan Y, Ong ST. A common BIM deletion polymorphism mediates intrinsic resistance and inferior responses to tyrosine kinase inhibitors in cancer. Nat Med. 2012;18:521–8.

    Article  CAS  Google Scholar 

  43. Wu J, Savooji J, Liu D. Second- and third-generation ALK inhibitors for non-small cell lung cancer. J Hematol Oncol. 2016;9:19.

    Article  Google Scholar 

  44. Mologni L, Redaelli S, Morandi A, Plaza-Menacho I, Gambacorti-Passerini C. Ponatinib is a potent inhibitor of wild-type and drug-resistant gatekeeper mutant RET kinase. Mol Cell Endocrinol. 2013;377:1–6.

    Article  CAS  Google Scholar 

  45. Rajani KB, Ashbacher LV, Kinney TR. Pulmonary hemorrhage and systemic lupus erythematosus. J Pediatr. 1978;93:810–2.

    Article  CAS  Google Scholar 

  46. Awad MM, Katayama R, McTigue M, Liu W, Deng YL, Brooun A, Friboulet L, Huang D, Falk MD, Timofeevski S, Wilner KD, Lockerman EL, Khan TM, Mahmood S, Gainor JF, Digumarthy SR, Stone JR, Mino-Kenudson M, Christensen JG, Iafrate AJ, Engelman JA, Shaw AT. Acquired resistance to crizotinib from a mutation in CD74-ROS1. N Engl J Med. 2013;368:2395–401.

    Article  CAS  Google Scholar 

  47. Sun H, Li Y, Tian S, Wang J, Hou T. P‑loop conformation governed crizotinib resistance in G2032R-mutated ROS1 tyrosine kinase: clues from free energy landscape. Plos Comput Biol. 2014;10:e1003729.

    Article  Google Scholar 

  48. Davare MA, Saborowski A, Eide CA, Tognon C, Smith RL, Elferich J, Agarwal A, Tyner JW, Shinde UP, Lowe SW, Druker BJ. Foretinib is a potent inhibitor of oncogenic ROS1 fusion proteins. Proc Natl Acad Sci U S A. 2013;110:19519–24.

    Article  CAS  Google Scholar 

  49. Cargnelutti M, Corso S, Pergolizzi M, Mevellec L, Aisner DL, Dziadziuszko R, Varella-Garcia M, Comoglio PM, Doebele RC, Vialard J, Giordano S. Activation of RAS family members confers resistance to ROS1 targeting drugs. Oncotarget. 2015;6:5182–94.

    Article  Google Scholar 

  50. Katayama R, Kobayashi Y, Friboulet L, Lockerman EL, Koike S, Shaw AT, Engelman JA, Fujita N. Cabozantinib overcomes crizotinib resistance in ROS1 fusion-positive cancer. Clin Cancer Res. 2015;21:166–74.

    Article  CAS  Google Scholar 

  51. Hofman P, Popper HH. Pathologists and liquid biopsies: to be or not to be? Virchows Arch. 2016; doi:10.1007/s00428-016-2004-z.

    Article  PubMed  Google Scholar 

  52. Lee SE, Lee B, Hong M, Song JY, Jung K, Lira ME, Mao M, Han J, Kim J, Choi YL. Comprehensive analysis of RET and ROS1 rearrangement in lung adenocarcinoma. Mod Pathol. 2015;28:468–79.

    Article  CAS  Google Scholar 

  53. Yousem SA, Nikiforova M, Nikiforov Y. The histopathology of BRAF-V600E-mutated lung adenocarcinoma. Am J Surg Pathol. 2008;32:1317–21.

    Article  Google Scholar 

  54. Paik PK, Arcila ME, Fara M, Sima CS, Miller VA, Kris MG, Ladanyi M, Riely GJ. Clinical characteristics of patients with lung adenocarcinomas harboring BRAF mutations. J Clin Oncol. 2011;29:2046–51.

    Article  Google Scholar 

  55. Hyman DM, Puzanov I, Subbiah V, Faris JE, Chau I, Blay JY, Wolf J, Raje NS, Diamond EL, Hollebecque A, Gervais R, Elez-Fernandez ME, Italiano A, Hofheinz RD, Hidalgo M, Chan E, Schuler M, Lasserre SF, Makrutzki M, Sirzen F, Veronese ML, Tabernero J, Baselga J. Vemurafenib in multiple nonmelanoma cancers with BRAF V600 mutations. N Engl J Med. 2015;373:726–36.

    Article  CAS  Google Scholar 

  56. Awad MM. Impaired c‑met receptor degradation mediated by MET Exon 14 mutations in non-small-cell lung cancer. J Clin Oncol. 2016;34:879–81.

    Article  CAS  Google Scholar 

  57. Frampton GM, Ali SM, Rosenzweig M, Chmielecki J, Lu X, Bauer TM, Akimov M, Bufill JA, Lee C, Jentz D, Hoover R, Ou SH, Salgia R, Brennan T, Chalmers ZR, Jaeger S, Huang A, Elvin JA, Erlich R, Fichtenholtz A, Gowen KA, Greenbowe J, Johnson A, Khaira D, McMahon C, Sanford EM, Roels S, White J, Greshock J, Schlegel R, Lipson D, Yelensky R, Morosini D, Ross JS, Collisson E, Peters M, Stephens PJ, Miller VA. Activation of MET via diverse exon 14 splicing alterations occurs in multiple tumor types and confers clinical sensitivity to MET inhibitors. Cancer Discov. 2015;5:850–9.

    Article  CAS  Google Scholar 

  58. Chaft JE, Litvak A, Arcila ME, Patel P, D’Angelo SP, Krug LM, Rusch V, Mattson A, Coeshott C, Park B, Apelian DM, Kris MG, Azzoli CG. Phase II study of the GI-4000 KRAS vaccine after curative therapy in patients with stage I‑III lung adenocarcinoma harboring a KRAS G12C, G12D, or G12V mutation. Clin Lung Cancer. 2014;15:405–10.

    Article  CAS  Google Scholar 

  59. Vassella E, Langsch S, Dettmer MS, Schlup C, Neuenschwander M, Frattini M, Gugger M, Schafer SC. Molecular profiling of lung adenosquamous carcinoma: hybrid or genuine type? Oncotarget. 2015;6:23905–16.

    Article  Google Scholar 

  60. Riely GJ, Johnson ML, Medina C, Rizvi NA, Miller VA, Kris MG, Pietanza MC, Azzoli CG, Krug LM, Pao W, Ginsberg MS. A phase II trial of Salirasib in patients with lung adenocarcinomas with KRAS mutations. J Thorac Oncol. 2011;6:1435–7.

    Article  Google Scholar 

  61. Weeden CE, Solomon B, Asselin-Labat ML. FGFR1 inhibition in lung squamous cell carcinoma: questions and controversies. Cell Death Discov. 2015;1:15049.

    Article  CAS  Google Scholar 

  62. Hall RD, Le TM, Haggstrom DE, Gentzler RD. Angiogenesis inhibition as a therapeutic strategy in non-small cell lung cancer (NSCLC). Transl Lung Cancer Res. 2015;4:515–23.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Rolfo C, Raez LE, Bronte G, Santos ES, Papadimitriou K, Buffoni L, van Meerbeeck JP, Russo A. BIBF 1120/intedanib: a new triple angiokinase inhibitor-directed therapy in patients with non-small cell lung cancer. Expert Opin Investig Drugs. 2013;22:1081–8.

    Article  CAS  Google Scholar 

  64. Guo Y, Wang AY. Novel immune check-point regulators in tolerance maintenance. Front Immunol. 2015;6:421.

    PubMed  PubMed Central  Google Scholar 

  65. Wang L, Le Mercier I, Putra J, Chen W, Liu J, Schenk AD, Nowak EC, Suriawinata AA, Li J, Noelle RJ. Disruption of the immune-checkpoint VISTA gene imparts a proinflammatory phenotype with predisposition to the development of autoimmunity. Proc Natl Acad Sci U S A. 2014;111:14846–51.

    Article  CAS  Google Scholar 

  66. Liu J, Yuan Y, Chen W, Putra J, Suriawinata AA, Schenk AD, Miller HE, Guleria I, Barth RJ, Huang YH, Wang L. Immune-checkpoint proteins VISTA and PD-1 nonredundantly regulate murine T‑cell responses. Proc Natl Acad Sci U S A. 2015;112:6682–7.

    Article  CAS  Google Scholar 

  67. Garon EB, Rizvi NA, Hui R, Leighl N, Balmanoukian AS, Eder JP, Patnaik A, Aggarwal C, Gubens M, Horn L, Carcereny E, Ahn MJ, Felip E, Lee JS, Hellmann MD, Hamid O, Goldman JW, Soria JC, Dolled-Filhart M, Rutledge RZ, Zhang J, Lunceford JK, Rangwala R, Lubiniecki GM, Roach C, Emancipator K, Gandhi L. Investigators K‑: Pembrolizumab for the treatment of non-small-cell lung cancer. N Engl J Med. 2015;372:2018–28.

    Article  Google Scholar 

  68. Reck M, Rodriguez-Abreu D, Robinson AG, Hui R, Csoszi T, Fulop A, Gottfried M, Peled N, Tafreshi A, Cuffe S, O’Brien M, Rao S, Hotta K, Leiby MA, Lubiniecki GM, Shentu Y, Rangwala R, Brahmer JR. Pembrolizumab versus chemotherapy for PD-L1-positive non-small-cell lung cancer. N Engl J Med. 2016;375:1823–33. doi:10.1056/nejmoa1606774.

    Article  CAS  PubMed  Google Scholar 

  69. Hirsch FR. The blueprint project: comparing PD-L1 IHC diagnostics for immune checkpoint inhibition. AACR Annual Meeting, New Orleans. 2016.

    Google Scholar 

Download references

Acknowledgements

MerckSharpDome (MSD) and Pfizer Austria provided the conference facilities for the above listed experts. The result of this discussion and the resulting manuscript was by no means influenced by the companies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helmut H. Popper.

Ethics declarations

Conflict of interest

Several authors have been paid for educational activities invited from pharmaceutical companies, and also act on advisory boards of these companies. H.H. Popper, U. Gruber-Mösenbacher, G. Hutarew, M. Hochmair, G. Absenger, L. Brcic, L. Müllauer, G. Dekan, U. Setinek, D. Krenbek, M. Vesely, R. Pirker, W. Hilbe, R. Kolb, G. Webersinke, T. Hernler, G. Pall, S. Lax, and A. Mohn-Staudner declare that they have no competing interests for this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Popper, H.H., Gruber-Mösenbacher, U., Hutarew, G. et al. Recommendations of the Austrian Working Group on Pulmonary Pathology and Oncology for predictive molecular and immunohistochemical testing in non-small cell lung cancer. memo 9, 191–200 (2016). https://doi.org/10.1007/s12254-016-0297-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12254-016-0297-x

Keywords

Navigation