Skip to main content
Log in

The relevance of positron emission tomography response in non-small cell lung cancer

  • review
  • Published:
memo - Magazine of European Medical Oncology Aims and scope Submit manuscript

Abstract

Background

Most patients treated for lung cancer experience disease recurrence or progression, resulting in high mortality rates. Computed tomography (CT) is central in evaluating treatment response; however, positron emission tomography (PET) may provide a more rapid and prognostically relevant assessment of changes in disease activity during and after treatment.

Methods

We present a case which illustrates the potential role of PET in assessing treatment response in non-small cell lung cancer (NSCLC) and review the relevant literature.

Results

A 49-year-old woman presented with an inoperable pancoast tumour of the lung and was treated with radiochemotherapy (RTCT). PET-CT showed that, while her tumour had not changed in size, the metabolic activity of the tumour had decreased significantly following RTCT. The decision was made to resect the tumour, which was found to contain only a small cluster of viable tumour cells. This case illustrates the clinical relevance of assessing metabolic tumour response in addition to morphologic tumour response. Clinical studies have shown PET to be a valuable addition to treatment response assessments performed using CT in a wide range of clinical situations. Following surgical treatment PET is more effective than CT alone in identifying recurrence, and may be useful in differentiating postoperative scar tissue from active tumour. During systemic treatment, whether with chemotherapy or EGFR-TKIs, the early metabolic response seen in PET can be predictive of the degree of clinical benefit.

Conclusions

In addition to the structural information provided by CT, the metabolic information from PET during or following treatment for NSCLC is increasingly valuable in clinical decision making.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Vansteenkiste J, Crino L, Dooms C, et al. 2nd ESMO Consensus Conference on Lung Cancer: early-stage non-small-cell lung cancer consensus on diagnosis, treatment and follow-up. Ann Oncol. 2014;25:1462–74.

    Article  PubMed  Google Scholar 

  2. Huber RM, Engel-Riedel W, Kollmeier J, et al. GILT study: oral vinorelbine (NVBo) and cisplatin (P) with concomitant radiotherapy (RT) followed by either consolidation (C) with NVBo plus P plus best supportive care (BSC) or BSC alone in stage (st) III non-small cell lung cancer (NSCLC): final results of a phase (ph) III study. J Clin Oncol. 2012;30. (suppl; abstr 7001).

  3. Rosell R1, Carcereny E, Gervais R, Vergnenegre A. Erlotinib versus standard chemotherapy as first-line treatment for European patients with advanced EGFR mutation-positive non-small-cell lung cancer (EURTAC): a multicentre, open-label, randomised phase 3 trial. Lancet Oncol. 2012;13(3):239–46

    Article  CAS  PubMed  Google Scholar 

  4. Yang J C-H, Sequist LV, Schuler MH, et al. Overall survival (OS) in patients (pts) with advanced non-small cell lung cancer (NSCLC) harboring common (Del19/L858R) epidermal growth factor receptor mutations (EGFR mut): Pooled analysis of two large open-label phase III studies (LUX-Lung 3 [LL3] and LUX-Lung 6 [LL6]) comparing afatinib with chemotherapy (CT). J Clin Oncol. 2014.(suppl; abstr 8004^).

  5. Jackman DM, Yeap BY, Sequist LV, et al. Exon 19 deletion mutations of epidermal growth factor receptor are associated with prolonged survival in non-small cell lung cancer patients treated with gefitinib or erlotinib. Clin Cancer Res. 2006;12(13):3908–14.

    Article  CAS  PubMed  Google Scholar 

  6. Erasmus JJ, Gladish GW, Broemeling L, et al. Interobserver and intraobserver variability in measurement of non-small-cell carcinoma lung lesions: implications for assessment of tumor response. J Clin Oncol. 2003; 21:2574–82.

    Article  PubMed  Google Scholar 

  7. Kris MG, Natale RB, Herbst RS, Lynch TJ Jr, Prager D, Belani CP, et al. Efficacy of gefitinib, an inhibitor of the epidermal growth factor receptor tyrosine kinase, in symptomatic patients with non-small cell lung cancer: a randomized trial. JAMA. 2003;290:2149–58.

  8. Birchard KR, Hoang JK, Herndon JE Jr, Patz EF Jr. Early changes in tumor size in patients treated for advanced stage nonsmall cell lung cancer do not correlate with survival. Cancer. 2009;115:581–6.

  9. Therasse P, Arbuck SG, Eisenhauer EA, Wanders J, Kaplan RS, Rubinstein L, et al. New guidelines to evaluate the response to treatment in solid tumors. European Organization for Research and Treatment of Cancer, National Cancer Institute of the United States, National Cancer Institute of Canada. J Natl Cancer Inst. 2000;92:205–16.

    Article  CAS  PubMed  Google Scholar 

  10. Eisenhauer EA, Therasse P, Bogaerts J, et al. New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur J Cancer. 2009;45:228–47.

    Article  CAS  PubMed  Google Scholar 

  11. Sohaib A. RECIST rules. Cancer Imaging. 2012;12:345–6.

  12. Young H, Baum R, Cremerius U, et al. Measurement of clinical and subclinical tumour response using [18F]-fluorodeoxyglucose and positron emission tomography: review and 1999 EORTC recommendations. European Organization for Research and Treatment of Cancer (EORTC) PET Study Group. Eur J Cancer. 1999;35:1773–82.

    Article  CAS  PubMed  Google Scholar 

  13. Wahl RL, Jacene H, Kasamon Y, Lodge MA. From RECIST to PERCIST: evolving considerations for PET response criteria in solid tumors. J Nucl Med. 2009;50(Suppl 1):122S–50S.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Ziai D, Wagner T, El Badaoui A, Hitzel A, Woillard JB, Melloni B, et al. Therapy response evaluation with FDG-PET/CT in small cell lung cancer: a prognostic and comparison study of the PERCIST and EORTC criteria. Cancer Imaging. 2013;13:73–80.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Ding Q, Cheng X, Yang L, et al. PET/CT evaluation of response to chemotherapy in non-small cell lung cancer: PET response criteria in solid tumors (PERCIST) versus response evaluation criteria in solid tumors (RECIST). J Thorac Dis. 2014;6:677–83.

    PubMed Central  PubMed  Google Scholar 

  16. Hicks RJ. Role of 18F-FDG PET in assessment of response in non-small cell lung cancer. J Nucl Med. 2009;50(Suppl 1):31S–42S.

    Article  CAS  PubMed  Google Scholar 

  17. Nahmias C, Wahl LM. Reproducibility of standardized uptake value measurements determined by 18F-FDG PET in malignant tumors. J Nucl Med. 2008;49:1804–8.

    Article  PubMed  Google Scholar 

  18. Weber WA, Ziegler SI, Thodtmann R, Hanauske AR, Schwaiger M. Reproducibility of metabolic measurements in malignant tumors using FDG PET. J Nucl Med. 1999;40:1771–7.

    CAS  PubMed  Google Scholar 

  19. Graham MM, Badawi RD, Wahl RL. Variations in PET/CT methodology for oncologic imaging at U.S. academic medical centers: an imaging response assessment team survey. J Nucl Med. 2011;52:311–7.

    Article  PubMed Central  PubMed  Google Scholar 

  20. Lee P, Weerasuriya DK, Lavori PW, Quon A, Hara W, Maxim PG, et al. Metabolic tumor burden predicts for disease progression and death in lung cancer. Int J Radiat Oncol, Biol, Phys. 2007;69:328–33.

    Article  Google Scholar 

  21. Liao S, Penney BC, Wroblewski K, Zhang H, Simon CA, Kampalath R, et al. Prognostic value of metabolic tumor burden on 18F-FDG PET in nonsurgical patients with non-small cell lung cancer. Eur J Nucl Med Mol Imaging. 2012;39:27–38.

    Article  CAS  PubMed  Google Scholar 

  22. Liao S, Penney BC, Zhang H, Suzuki K, Pu Y. Prognostic value of the quantitative metabolic volumetric measurement on 18F-FDG PET/CT in Stage IV nonsurgical small-cell lung cancer. Acad Radiol. 2012;19:69–77.

    Article  PubMed  Google Scholar 

  23. Longo DL. Tumor heterogeneity and personalized medicine. N Engl J Med. 2012;366:956–7.

    Article  CAS  PubMed  Google Scholar 

  24. Nishino M, Hatabu H, Johnson BE, McLoud TC. State of the art: response assessment in lung cancer in the era of genomic medicine. Radiology. 2014;271:6–27.

    Article  PubMed Central  PubMed  Google Scholar 

  25. Groome PA, Bolejack V, Crowley JJ, et al. IASLC International Staging Committee, Cancer Research and Biostatistics, Observers to the Committee, Participating Institutions. The IASLC Lung Cancer Staging Project: validation of the proposals for revision of the T, N, and M descriptors and consequent stage groupings in the forthcoming (seventh) edition of the TNM classification of malignant tumours. J Thorac Oncol. 2007;2(8):694–705.

    Article  PubMed  Google Scholar 

  26. Backhus LM, Farjah F, Zeliadt SB, et.al. Predictors of imaging surveillance for surgically treated early-stage lung cancer. Ann Thorac Surg. 2014;98(6):1944–52.

    Article  PubMed  Google Scholar 

  27. Toba H, Sakiyama S, Otsuka H, Kawakami Y, Takizawa H, Kenzaki K, Kondo K, Tangoku A. 18F-fluorodeoxyglucose positron emission tomography/computed tomography is useful in postoperative follow-up of asymptomatic non-small-cell lung cancer patients. Interact Cardiovasc Thorac Surg. 2012;15(5):859–64.

    Article  PubMed Central  PubMed  Google Scholar 

  28. Choi SH, Kim YT, Kim SK, et al. Positron emission tomography-computed tomography for postoperative surveillance in non-small cell lung cancer. Ann Thorac Surg. 2011;92(5):1826–32.

    Article  PubMed  Google Scholar 

  29. Gorenberg M, Bar-Shalom R, Israel O. Patterns of FDG uptake in post-thoracotomy surgical scars in patients with lung cancer. Br J Radiol. 2008;81(970):821–5.

    Article  CAS  PubMed  Google Scholar 

  30. Lee HY, Lee HJ, Kim YT, Kang CH, Jang BG, Chung DH, Goo JM, Park CM, Lee CH, Kang KW. Value of combined interpretation of computed tomography response and positron emission tomography response for prediction of prognosis after neoadjuvant chemotherapy in non-small cell lung cancer. J Thorac Oncol. 2010;5(4):497–503.

    Article  PubMed  Google Scholar 

  31. Tanvetyanon T, Eikman EA, Sommers E, Robinson L, Boulware D, Bepler G. Computed tomography response, but not positron emission tomography scan response, predicts survival after neoadjuvant chemotherapy for resectable non-small-cell lung cancer. J Clin Oncol. 2008;26(28):4610–6.

    Article  PubMed  Google Scholar 

  32. Eschmann SM, Friedel G, Paulsen F, et al. 18F-FDG PET for assessment of therapy response and preoperative re-evaluation after neoadjuvant radio-chemotherapy in stage III non-small cell lung cancer. Eur J Nucl Med Mol Imaging. 2007;34(4):463–71.

    Article  PubMed  Google Scholar 

  33. Lim HJ, Lee HY, Lee KS, Han J, Kwon OJ, Park K, Ahn YC, Kim BT, Shim YM. Predictive factors for survival in stage IIIA N2 NSCLC patients treated with neoadjuvant CCRT followed by surgery. Cancer Chemother Pharmacol. 2015;75(1):77–85.

    Article  CAS  PubMed  Google Scholar 

  34. Poettgen C, Theegarten D, Eberhardt W, Levegruen S, Gauler T, Krbek T, Stamatis G, Teschler H, Kuehl H, Bockisch A, Stuschke M. Correlation of PET/CT findings and histopathology after neoadjuvant therapy in non-small cell lung cancer. Oncology. 2007;73(5–6):316–23.

    Article  CAS  PubMed  Google Scholar 

  35. Aukema TS, Kappers I, Olmos RA, et al., NEL Study Group. Is 18F-FDG PET/CT useful for the early prediction of histopathologic response to neoadjuvant erlotinib in patients with non-small cell lung cancer? J Nucl Med. 2010;51(9):1344–8.

    Article  CAS  PubMed  Google Scholar 

  36. Schaake EE, Kappers I, Codrington HE, Valdés Olmos RA, Teertstra HJ, van Pel R, Burgers JA, van Tinteren H, Klomp HM. Tumor response and toxicity of neoadjuvant erlotinib in patients with early-stage non-small-cell lung cancer. J Clin Oncol. 2012;30(22):2731–8.

    Article  CAS  PubMed  Google Scholar 

  37. Mac Manus M and Hicks R. The role of positron emission tomography/computed tomography in radiation therapy planning for patients with lung cancer. Semin Nucl Med. 2012;42(5):308–19.

    Article  PubMed  Google Scholar 

  38. Mac Manus M, Hicks RJ, et al. Positron emission tomography is superior to computed tomography scanning for response-assessment after radical radiotherapy or chemoradiotherapy in patients with non-small cell lung cancer. J Clin Oncol. 2003;21(7):1285–92.

    Article  PubMed  Google Scholar 

  39. Pöllinger B, Huber RM, Siefert A, Schmid RA, Stratakis D, Dühmke E. The role of positron emission tomography (PET) to determine the response to (chemo-) radiotherapy in locally advanced unresectable lung cancer. Am J Respir Crit Care Med. 2004;169;A753.

    Google Scholar 

  40. Edet-Sanson A., Dubray B, et al. Serial assessment of FDG-PET FDG uptake and functional volume during radiotherapy (RT) in patients with non-small cell lung cancer (NSCLC). Radiother Oncol. 2012;102:251–7.

    Article  PubMed  Google Scholar 

  41. Mac Manus M., Ding Z, Hogg A, et al. Association between pulmonary uptake of fluorodeoxyglucose detected by positron emission tomography scanning after radiation therapy for non-small-cell lung cancer and radiation pneumonitis. Int J Radiat Oncol Biol Phys. 2011;80(5):1365–71.

    Article  PubMed  Google Scholar 

  42. Kostakoglu L, Coleman M, Leonard JP, Kuji I, Zoe H, Goldsmith SJ. PET predicts prognosis after 1 cycle of chemotherapy in aggressive lymphoma and Hodgkin’s disease. J Nucl Med. 2002;43:1018–27.

    PubMed  Google Scholar 

  43. Ott K, Fink U, Becker K, et al. Prediction of response to preoperative chemotherapy in gastric carcinoma by metabolic imaging: results of a prospective trial. J Clin Oncol. 2003;21:4604–10.

    Article  CAS  PubMed  Google Scholar 

  44. Avril N, Sassen S, Schmalfeldt B, et al. Prediction of response to neoadjuvant chemotherapy by sequential F-18-fluorodeoxyglucose positron emission tomography in patients with advanced-stage ovarian cancer. J Clin Oncol. 2005;23:7445–53.

    Article  PubMed  Google Scholar 

  45. Smith IC, Welch AE, Hutcheon AW, et al. Positron emission tomography using [18F]-fluorodeoxy-D-glucose to predict the pathologic response of breast cancer to primary chemotherapy. J Clin Oncol. 2000;18:1676–88.

    CAS  PubMed  Google Scholar 

  46. Weber WA, Petersen V, Schmidt B, et al. Positron emission tomography in non-small cell lung cancer: prediction of response to chemotherapy by quantitative assessment of glucose use. J Clin Oncol. 2003;21:2651–7.

    Article  CAS  PubMed  Google Scholar 

  47. Hoekstra CJ, Stroobant SG, Smit EF, et al. Prognostic relevance of response evaluation using [18F]-2-fluoro-2-deoxy-D-glucose positron emission tomography in patients with locally advanced non-small-cell lung cancer. J Clin Oncol. 2005;23:8362–70.

    Article  PubMed  Google Scholar 

  48. Nahmias C., Hanna W.T, et al. Time course of early response to chemotherapy in non-small cell lung cancer patients with 18F-FDG PET/CT. J Nucl Med. 2007;48:744–51

    Article  CAS  PubMed  Google Scholar 

  49. Yang W, Zhang Y, Fu Z, et al. Imaging proliferation of (1)(8)F-FLT PET/CT correlated with the expression of microvessel density of tumour tissue in non-small-cell lung cancer. Eur J Nucl Med Mol Imaging. 2012;39:1289–96.

    Article  CAS  PubMed  Google Scholar 

  50. Su H, Bodenstein C, Dumont R, et al. Monitoring tumor glucose utilization by positron emission tomography for the prediction of treatment response to epidermal growth factor receptor kinase inhibitors. Clin Cancer Res. 2006;12(19):5659–67.

    Article  CAS  PubMed  Google Scholar 

  51. Riely G, Kris MG, Zaho B, et al. Prospective assessment of discontinuation and reinitiation of erlotinib or gefitinib in patients with acquired resistance to erlotinib or gefitinib followed by the addition of everolimus. Clin Cancer Res. 2007;13(17):5150–5.

    Article  CAS  PubMed  Google Scholar 

  52. Benz M, Herrmann K, Walter F, et al. 18F-FDG PET/CT for monitoring treatment responses to the epidermal growth factor receptor inhibitor erlotinib. J Nucl Med. 2011;52(11):1684–9.

    Article  CAS  PubMed  Google Scholar 

  53. Hachemi M, Couturier O, et al. 18F FDG positron emission tomography within two weeks of starting erlotinib therapy can predict response in non-small cell lung cancer patients. PLOS One. 2014;9(2):e87629.

    Article  PubMed Central  PubMed  Google Scholar 

  54. Takahashi R, Hirata H, Tachibana I, et al. Early 18-F-fluorodeoxyglucose positron emission tomography at two days of gefitinib treatment predicts clinical outcome in patients with adenocarcinoma of the lung. Clin Cancer Res. 2012;18(1):220–8.

    Article  CAS  PubMed  Google Scholar 

  55. Kahraman D, Scheffler M, Zander T, et al. Quantitative analysis of response to treatment with erlotinib in advanced non-small cell lung cancer using 18F-FDG and 3-deoxy-3–18F-fluorothymidine PET. J Nucl Med. 2011;52:1871–7.

    Article  CAS  PubMed  Google Scholar 

  56. Mileshkin L, Hicks RJ, Hughes BGM, et al. Changes in 18F-fluorodeoxyglucose and 18-fluorodeoxythymidine positron emission tomography imaging in patients with non-small cell lung cancer treated with erlotinib. Clin Cancer Res. 2011;17(10)3304–15.

    Article  CAS  PubMed  Google Scholar 

  57. Zander T, Scheffler M, Nogova L, et al. Early prediction of nonprogression in advanced non-small cell lung cancer treated with erlotinib by using 18-F fluorodeoxyglucose and 18F fluorothymidine positron emission tomography. J Clin Oncol. 2011;29:1701–8.

    Article  CAS  PubMed  Google Scholar 

  58. Puranik AD, Purandare NC, Shah S, et al. Role of FDG PET/CT in assessing response to targeted therapy in metastatic lung cancers: Morphological versus metabolic criteria. Indian J Nucl Med. 2015;30(1):21–5.

    Article  PubMed Central  PubMed  Google Scholar 

  59. van Gool M.H., Aukema TS, et al. FDG-PET/CT response evaluation during EGFR-TKI treatment in patients with NSCLC. World J Radiol. 2014;6(7):392–8

    Article  PubMed Central  PubMed  Google Scholar 

  60. Tufman AL, Edelmann M, Gamarra F, et al. Preselection based on clinical characteristics in German non-small-cell lung cancer patients screened for EML4-ALK translocation. J Thorac Oncol. 2014;9(1):109–13.

    Article  CAS  PubMed  Google Scholar 

  61. Shaw AT, Kim DW, Nakagawa K, et al. Crizotinib versus chemotherapy in advanced ALK-positive lung cancer. N Engl J Med. 2013;368:2385–94.

    Article  CAS  PubMed  Google Scholar 

  62. Gupta SK. Role of Crizotinib in previously treated non-small-cell lung cancer. South Asian J Cancer. 2014;3(2):138–40.

    Article  PubMed Central  PubMed  Google Scholar 

  63. Ou SH I, Bazhenova L, Camidge DR, et al. Rapid and dramatic radiographic and clinical response to an ALK inhibitor (crizotinib, PF02341066) in an ALK translocation-positive patient with non-small cell lung cancer. J Thorac Oncol. 2010;5:2044–6.

    Article  PubMed  Google Scholar 

  64. Kim SJ, Kim DW, Kim TM, et al. Remarkable tumor response to crizotinib in a 14-year old girl with ALK-positive non-small-cell lung cancer. J Clin Oncol. 2012;30(16):e147–50.

    Article  CAS  PubMed  Google Scholar 

  65. Kerner G, et al. Total body metabolic tumor response in ALK-positive non-small cell lung cancer treated with crizotinib. J Clin Oncol. 2014;32. (suppl; abstr e 19062).

  66. Gambacorti-Passerini C, Messa C, Pogliani EM. Crizotinib in anaplastic large-cell lymphoma. N Engl J Med. 2011;364;8.

    Article  Google Scholar 

  67. Cullinane C, Dorow D, Jackson S, et al. Differential 18F-FDG and 2-deoxz-2-18F-fluorothymidine PET responses to pharmacologic inhibition of the c-MET receptor in preclinical tumor models. J Nucl Med. 2011;52:1261–7.

    Article  CAS  PubMed  Google Scholar 

  68. Camidge DR, Bang Y, Kwak EL, et al. Progression-free survival (PFS) from a phase I study of crizotinib (PF-02341066) in patients with ALK-positive non-small cell lung cancer (NSCLC). J Clin Oncol. 2011;29. (suppl; abstr 2501).

  69. Oxnard GR, Lo P, Jackman DM, et al. Delay of chemotherapy through use of post-progression erlotinib in patients with EGFR-mutant lung cancer. J Clin Oncol. 2012;30(15). (suppl 7547).

  70. Baar J, Silverman P, Lyons J, et al. A vasculature-targeting regimen of preoperative docetaxel with or without bevacizumab for locally advanced breast cancer: impact on angiogenic biomarkers. Clin Cancer Res. 2009;15:3583–90.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  71. Normanno N, Bianco C, De Luca A, Maiello MR, Salomon DS. Target-based agents against ErbB receptors and their ligands: a novel approach to cancer treatment. Endocr Relat Cancer. 2003;10:1–21.

    Article  CAS  PubMed  Google Scholar 

  72. Kim KJ, Li B, Winer J, Armanini M, Gillett N, Phillips HS, et al. Inhibition of vascular endothelial growth factor-induced angiogenesis suppresses tumour growth in vivo. Nature. 1993;362:841–4.

    Article  CAS  PubMed  Google Scholar 

  73. de Langen AJ, van den Boogaart V, Lubberink M, Backes WH, Marcus JT, van Tinteren H, et al. Monitoring response to antiangiogenic therapy in non-small cell lung cancer using imaging markers derived from PET and dynamic contrast-enhanced MRI. J Nucl Med. 2011;52:48–55.

    Article  PubMed  Google Scholar 

  74. Kurtz DM, Gambhir SS. Tracking cellular and immune therapies in cancer. Advances in cancer research. 2014;124:257–96.

    Article  PubMed  Google Scholar 

  75. Wolchok JD, Hoos A, O’Day S, et al. Guidelines for the evaluation of immune therapy activity in solid tumors: immune-related response criteria. Clin Cancer Res. 2009;15(23):7412–20.

    Article  CAS  PubMed  Google Scholar 

  76. Sundar R, Soongb R, Chod BC, et al. Immunotherapy in the treatment of non-small cell lung cancer. Lung Cancer. 2014;85(2):101–9.

    Article  PubMed Central  PubMed  Google Scholar 

  77. Oxnard GR, Morris MJ, Hodi FS, Baker LH, Kris MG, Venook AP, et al. When progressive disease does not mean treatment failure: reconsidering the criteria for progression. J Natl Cancer Inst. 2012;104:1534–41.

    Article  PubMed Central  PubMed  Google Scholar 

  78. Brahmer JR, Tykodi SS, Chow LQM, et al. Safety and activity of anti–PD-L1 antibody in patients with advanced cancer. N Engl J Med. 2012;366(26):2455–65.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  79. Lynch TJ, Bondarenko I, Luft A, et al. Ipilimumab in combination with paclitaxel and carboplatin as first-line treatment in stage IIIB/IV non–small-cell lung cancer: results from a randomized, double-blind, multicenter phase II study. J Clin Oncol. 2012. doi:10.1200/JCO.2011.38.4032

  80. Tirkes T, Hollar MA, Tann M, Kohli MD, Akisik F, Sandrasegaran K. Response criteria in oncologic imaging: review of traditional and new criteria. Radiographics. 2013;33:1323–41.

    Article  PubMed  Google Scholar 

  81. Gilles R, de Geus-Oei LF, Mulders PFA, Oyen WJG. Immunotherapy response evaluation with 18F-FDG-PET in patients with advanced stage renal cell carcinoma. World J Urol. 2013;31:841–6

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amanda Tufman MD.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tufman, A., Müller-Lisse, U., Reu, S. et al. The relevance of positron emission tomography response in non-small cell lung cancer. memo 8, 119–129 (2015). https://doi.org/10.1007/s12254-015-0213-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12254-015-0213-9

Keywords

Navigation