Skip to main content
Log in

Molecular monitoring of minimal residual disease in acute leukemia

  • short review
  • Published:
memo - Magazine of European Medical Oncology Aims and scope Submit manuscript

Abstract

Treatment of patients with acute leukemia is based on antineoplastic drug therapy (mainly chemotherapy) and/or immunotherapy, such as allogeneic stem cell transplantation, both associated with the risk of severe toxicity, including treatment-related mortality. Therefore, the extent of therapy should ideally be adapted to the patient’s individual relapse risk. The latter can be estimated taking into account leukemia subtype as well as conventional and molecular cytogenetics, as determined at the time of diagnosis. Furthermore, particularly in acute lymphoblastic leukemia (ALL), early and subsequent assessment of treatment response is routinely incorporated into the global risk stratification. Multiparameter flow cytometry and molecular methods allow for the detection of minimal residual disease that remains obscure to conventional cytology. While molecular monitoring of the treatment efficacy has entered clinical routine in chronic myelogenous leukemia, acute promyelocytic leukemia and ALL, this concept is still evolving in acute myeloid leukemia. This short review is aimed to give an overview of current methods as well as established and candidate indications of molecular disease monitoring in patients with acute leukemia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Hokland P, Ommen HB. Towards individualized follow-up in adult acute myeloid leukemia in remission. Blood. 2011;117(9):2577–84.

    Article  PubMed  CAS  Google Scholar 

  2. Chendamarai E, Balasubramanian P, George B, et al. Role of minimal residual disease monitoring in acute promyelocytic leukemia treated with arsenic trioxide in frontline therapy. Blood. 2012;119(15):3413–9.

    Article  PubMed  CAS  Google Scholar 

  3. Corbacioglu A, Scholl C, Schlenk RF, et al. Prognostic impact of minimal residual disease in CBFB-MYH11-positive acute myeloid leukemia. J Clin Oncol. 2010;28(23):3724–9.

    Article  PubMed  CAS  Google Scholar 

  4. Guieze R, Renneville A, Cayuela JM, et al. Prognostic value of minimal residual disease by real-time quantitative PCR in acute myeloid leukemia with CBFB-MYH11 rearrangement: the French experience. Leukemia. 2010;24(7):1386–8.

    Article  PubMed  CAS  Google Scholar 

  5. Jourdan E, Boissel N, Chevret S, et al. Prospective evaluation of gene mutations and minimal residual disease (MRD) in patients with core binding factor acute myeloid leukemia (CBF-AML). Blood. 2013;121(12):2213–23.

    Article  PubMed  CAS  Google Scholar 

  6. Liu Yin JA, O’Brien MA, Hills RK, et al. Minimal residual disease monitoring by RT-qPCR in core-binding factor AML allows risk-stratification and predicts relapse: results of the UK MRC AML-15 Trial. Blood. 2012;120(14):2826–35.

    Article  Google Scholar 

  7. Santamaría C, Chillón MC, Fernández C, et al. Using quantification of the PML-RARA transcript to stratify the risk of relapse in patients with acute promyelocytic leukemia. Haematologica. 2007;92:315–22.

    Article  PubMed  Google Scholar 

  8. Zhang L, Li Q, Li W, et al. Monitoring of minimal residual disease in acute myeloid leukemia with t(8;21)(q22;q22). Int J Hematol. 2013;97(6):786–92.

    Article  PubMed  CAS  Google Scholar 

  9. Schnittger S, Kern W, Tschulik C, et al. Minimal residual disease levels assessed by NPM1 mutation specific RQ-PCR provide important prognostic information in AML. Blood. 2009;114(11):2220–31.

    Article  PubMed  CAS  Google Scholar 

  10. Krönke J, Schlenk RF, Jensen KO, et al. Monitoring of minimal residual disease in NPM1-mutated acute myeloid leukemia: a study from the German-Austrian acute myeloid leukemia study group. J Clin Oncol. 2011;29(19):2709–16.

    Article  PubMed  Google Scholar 

  11. Cilloni D, Renneville A, Hermitte F, et al. Real-time quantitative polymerase chain reaction detection of minimal residual disease by standardized WT1 assay to enhance risk stratification in acute myeloid leukemia: a European LeukemiaNet study. J Clin Oncol. 2009;27(31):5195–201.

    Article  PubMed  CAS  Google Scholar 

  12. Andersson C, Li X, Lorenz F, et al. Reduction in WT1 gene expression during early treatment predicts the outcome in patients with acute myeloid leukemia. Diagn Mol Pathol. 2012;21:225–33.

    Article  PubMed  CAS  Google Scholar 

  13. Marani C, Clavio M, Grasso R, et al. Integrating post induction WT1 quantification and flow-cytometry results improves minimal residual disease stratification in acute myeloid leukemia. Leuk Res. 2013;37(12):1606–11. doi:10.1016/j.leukres.2013.07.005.

    Article  PubMed  Google Scholar 

  14. Abdelhamid E, Preudhomme C, Helevaut N, et al. Minimal residual disease monitoring based on FLT3 internal tandem duplication in adult acute myeloid leukemia. Leuk Res. 2012;36(3):316–23.

    Article  PubMed  CAS  Google Scholar 

  15. Scholl S, Loncarevic IF, Krause C, et al. Minimal residual disease based on patient specific Flt3-ITD and -ITT mutations in acute myeloid leukemia. Leuk Res. 2005;29(7):849–53.

    Article  PubMed  CAS  Google Scholar 

  16. Schiller J, Praulich I, Krings Rocha C, et al. Patient specific analysis of FLT3 internal tandem duplications for the prognostication and monitoring of acute myeloid leukemia. Eur J Haematol. 2012;89(1):53–62.

    Article  PubMed  CAS  Google Scholar 

  17. Ommen HB, Schnittger S, Jovanovic JV, et al. Strikingly different molecular relapse kinetics in NPM1c, PML-RARA, RUNX1-RUNX1T1 and CBFB-MYH11 acute myeloid leukemias. Blood. 2010;115(2):198–205.

    Article  PubMed  CAS  Google Scholar 

  18. Grimwade D, Jovanovic JV, Hills RK, et al. Prospective minimal residual disease monitoring to predict relapse of acute promyelocytic leukemia and to direct pre-emptive arsenic trioxide therapy. J Clin Oncol. 2009;27(22):3650–8.

    Article  PubMed  CAS  Google Scholar 

  19. Zhu HH, Zhang XH, Qin YZ, et al. MRD-directed risk-stratification treatment may improve outcome of t (8;21) AML in the first complete remission: results from AML05 Multicenter Trial. Blood. 2013;121(20):4056–62.

    Article  PubMed  CAS  Google Scholar 

  20. Hourigan CS, Karp JE. Minimal residual disease in acute myeloid leukaemia. Nat Rev Clin Oncol. 2013;10:460–71.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  21. Brüggemann M, Gökbuget N, Kneba M, et al. Acute lymphoblastic leukemia: monitoring minimal residual disease as a therapeutic principle. Semin Oncol. 2012;39:47–57.

    Article  PubMed  Google Scholar 

  22. Brüggemann M, Schrauder A, Raff T, et al. Standardized MRD quantification in European ALL trials: proceedings of the Second International Symposium on MRD assessment in Kiel, Germany, 18–20 September 2008. Leukemia. 2010;24(3):521–35.

    Article  PubMed  Google Scholar 

  23. van Dongen JJM, Seriu T, Panzer-Grümayer R, et al. Prognostic value of minimal residual disease in acute lymphoblastic leukaemia in childhood. Lancet. 1998;352(28):1731–8.

    Article  PubMed  Google Scholar 

  24. Brüggemann M, Raff T, Kneba M. Has MRD monitoring superseded other prognostic factors in adult ALL? Blood. 2012;120(23):4470–81.

    Article  PubMed  Google Scholar 

  25. Lee S, Kim DW, Cho BS, et al. Impact of minimal residual disease kinetics during imatinib-based treatment on transplantation outcome in Philadelphia chromosome-positive acute lymphoblastic leukemia. Leukemia. 2012;26(11):2367–74.

    Article  PubMed  CAS  Google Scholar 

  26. Ravandi F, Jorgensen JL, Thomas DA, et al. Detection of MRD may predict the outcome of patients with Philadelphia-chromosome positive ALL treated with tyrosine kinase inhibitors plus chemotherapy. Blood. 2013;122(7):1214–21.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  27. Wassmann B, Pfeifer H, Stadler M, et al. Early molecular response to post-transplant imatinib determines outcome in MRD-positive Philadelphia-positive acute lymphoblastic leukemia (Ph + ALL). Blood. 2005;106(2):458–63.

    Article  PubMed  CAS  Google Scholar 

  28. Buckley SA, Appelbaum FR, Walter RB. Prognostic and therapeutic implications of minimal residual disease at the time of transplantation in acute leukemia. Bone Marrow Transplant. 2013;48(5):630–41.

    Article  PubMed  CAS  Google Scholar 

  29. Campana D, Leung W. Clinical significance of minimal residual disease in patients with acute leukaemia undergoing haematopoietic stem cell transplantation. Br J Haematol. 2013;162(2):147–61.

    Article  PubMed  Google Scholar 

Download references

Conflict of interest

The authors declare that there is no actual or potential conflict of interest in relation with this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Otto Zach PD, PhD.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zach, O., Clausen, J. Molecular monitoring of minimal residual disease in acute leukemia. memo 7, 144–147 (2014). https://doi.org/10.1007/s12254-014-0169-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12254-014-0169-1

Keywords

Navigation