Skip to main content

Advertisement

Log in

More and better cure for an orphan: priorities for future paediatric cancer research in Europe – Meeting report of the EC-funded science-communication project DIRECT “Overcoming Cancer with Research”

  • Experts Statement
  • Published:
memo - Magazine of European Medical Oncology Aims and scope Submit manuscript

Background

Although cure rates for childhood cancer have improved from below 20% to more than 75% during the last 40 years, childhood cancer is still the number one killer amongst paediatric diseases. European paediatric cancer research also faces new challenges by the increasing number of childhood cancer survivors, some of whom experience significantly altered life-quality due to serious psychosocial and medical long-term side-effects of the intensive cancer treatment. Hence, to achieve even higher quantity and quality of cure for Europe’s children and adolescents with cancer, development of new treatment options is now required, as are intensified epidemiological investigations into health and psycho-social issues of paediatric cancer survivors on the EU-level.

Methods

Based on presentations and discussions at a recent meeting of leading European paediatric oncologists supported by the EC-funded science-communication project “DIRECT", this article discusses the situation of European paediatric cancer research under the EU-Framework Programmes (FPs).

Results

Single, partially interlinking paediatric oncological research projects received EU-funding during the last three FPs. However, given the increased budgets for health research under the FP6 and FP7 together with their goal to improve the European Research Area (ERA), relatively few of the current challenges in European paediatric oncology have been covered so far when compared to the spending for adult cancer.

Conclusion

Although still fragmented, current EC-funded projects in paediatric oncology would be amenable to a higher level of integration. In order to achieve a closer approach to “total cure” including all medical, psychological and social aspects, paediatric cancer should become a horizontal priority of European research funding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Creutzig U, Henze G and Bielack S et al (2003). Krebserkrankungen bei Kindern. Erfolg durch einheitliche Therapiekonzepte seit 25 Jahren. Deutsches Aerzteblatt 100(13): A842–A852

    Google Scholar 

  2. Pritchard-Jones K, Steliarova-Foucher E and Stiller C et al (2006). Cancer in children and adolescents in Europe: developments over 20 years and future challenges. Eur J Cancer 42: 2183–2190

    Article  CAS  PubMed  Google Scholar 

  3. Meadows AT (2003). Pediatric cancer survivors: past history and future challenges. Curr Probl Cancer 27: 112–126

    Article  PubMed  Google Scholar 

  4. Haupt R, Spinetta JJ and Ban I et al (2007). Long term survivors of childhood cancer: cure and care. The Erice statement. Eur J Cancer 43: 1778–1780

    Article  Google Scholar 

  5. Directive 2001/20/EC of the European Parliament and of the Council of 4 April 2001 on the approximation of the laws, regulations and administrative provisions of the Member States relating to the implementation of good clinical practice in the conduct of clinical trials on medical products for human use. http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2001:121:0034:0044:EN:PDF (accessed 10.08.2009).

  6. Regulation (EC) No. 1901/2006 of the European Parliament and of the Council of 12 December 2006 on medicinal products for paediatric use and amending Regulation (EEC) No. 1768/92, Directive 2001/20/EC, Directive 2001/83/EC and Regulation (EC) No. 726/2004 (Text witheEA relevance). http://eurlex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2006:378:0001:0019:EN:PDF (accessed 10.08.2009).

  7. Pritchard-Jones K (2008). Clinical trials for children with cancer in Europe – Still a long way from harmonisation. A report from SIOP Europe. Eur J Cancer, 44: 2106–2111

    CAS  Google Scholar 

  8. Vassal G (2009). Will children with cancer benefit from the new European Paediatric Medicines Regulation?. Eur J Cancer 45: 1535–1546

    Article  PubMed  Google Scholar 

  9. Forward look – investigator driven clinical trials; www.esf.org (accessed 08.08.2009).

  10. DIRECT/Overcoming cancer with research; www.forschenheiltkrebs.eu (accessed 30.07.2009).

  11. Informationsportal der Gesellschaft fuer Paediatrische Onkologie/Haematologie; http: http://www.kinderkrebsinfo.de (accessed 22.07.2009).

  12. Seventh Framework Programme (FP7). Available from: http://cordis.europa.eu/fp7/ (accessed 02.08.2009).

  13. Boyle P and Ferlay J. (2004). Cancer Incidence and mortality in Europe. Ann Oncol 16: 481–488

    Article  Google Scholar 

  14. Sixth Framework Programme (FP6). Available from: http://cordis.europa.eu/fp6/dc/index.cfm?fuseaction=UserSite.FP6HomePage (accessed 11.08.2009).

  15. Manoussaki, E. (Ed.) Cancer research: projects funded under the sixth framework programme. ftp://ftp.cordis.europa.eu/pub/lifesciehealth/docs/general_catalogue_en.pdf, 2006.

  16. Hanahan D and Weinberg RA (2000). The hallmarks of cancer. Cell 100: 57–70

    Article  CAS  PubMed  Google Scholar 

  17. Jungbluth S, Kelm O and Loo J-W et al (2007). The European Union’s commitment to cancer research in the 6th framework programme. Mol Oncol 1: 14–18

    Article  PubMed  Google Scholar 

  18. Prognosis and therapeutic targets in Ewing tumors (PROTHETS). Available from: http://www.prothets.org/ (accessed 21.07.2009).

  19. Scotlandi K, Remondini D and Castellani G et al (2009). Overcoming resistance to conventional drugs in Ewing sarcoma and identification of molecular predictors of outcome. J Clin Oncol 27: 2209–2216

    Article  CAS  PubMed  Google Scholar 

  20. Zambelli D, Zuntini M, Nardi F, et al. Biological indicators of prognosis in Ewing’s sarcoma: an emerging role for lectin galactoside-binding soluble 3 binding protein (LGALS3BP). Int J Cancer, (in press).

  21. Savola S, Klami A and Tripathi A et al (2009). Combined use of expression and CGH arrays pinpoints novel candidate genes in Ewing sarcoma family of tumors. BMC Cancer 9: 17

    Article  PubMed  Google Scholar 

  22. Scotlandi K, Perdichizzi S and Bernard G et al (2006). Targeting CD99 in association with doxorubicin: an eff ective combined treatment for Ewing’s sarcoma. Eur J Cancer 42: 91–96

    Article  CAS  PubMed  Google Scholar 

  23. Picci P, Scotlandi K and Serra M et al (2006). Prognostic and therapeutic targets in the Ewing’s family of tumors (PROTHETS). Adv Exp Med Biol 587: 1–12

    CAS  PubMed  Google Scholar 

  24. Kauer M, Ban J and Kofler R et al (2009). A molecular function map of Ewing’s sarcoma. PLoS One 4: e5415

    Article  PubMed  Google Scholar 

  25. Richter GH, Plehm S and Fasan A et al (2009). EZH2 is a mediator of EWS/FLI1 driven tumor growth and metastasis blocking endothelial and neuro-ectodermal diff erentiation. Proc Natl Acad Sci USA 106: 5324–5329

    Article  CAS  PubMed  Google Scholar 

  26. Bachmaier R, Aryee DN and Jug G et al (2009). O-GlcNAcylation is involved in the transcriptional activity of EWS-FLI1 in Ewing’s sarcoma. Oncogene 28: 1280–1284

    Article  CAS  PubMed  Google Scholar 

  27. Ban J, Bennani-Baiti IM and Kauer M et al (2008). EWS-FLI1 suppresses NOTCHactivated p53 in Ewing’s sarcoma. Cancer Res 68: 7100–7109

    Article  CAS  PubMed  Google Scholar 

  28. European Embryonal Tumor-Pipeline (EET-pipeline). Available from: http://www.lifecompetence.eu/index.php/kb_1/io_636/io.html (accessed 21.07.2009).

  29. Kids Cancer Kinome. Available from: http://www.kidscancerkinome.org/ – Innovative Therapies for Cancer in Children (ITCC). Available from: http://www.itcc-consortium.org/ (accessed 20.07.2009).

  30. Molenaar JJ, Ebus ME, Geerts D, et al. Inactivation of CDK2 is synthetically lethal to MYCN over-expressing cancer cells. Proc Natl Acad Sci USA, (in press).

  31. Molenaar JJ, Ebus ME and Koster J et al (2008). Cyclin D1 and CDK4 activity contribute to the undiff erentiated phenotype in neuroblastoma. Cacner Res 68: 2599–2609

    Article  CAS  Google Scholar 

  32. European network to promote research into uncommon cancers in adults and children: Pathology, Biology and Genetics of bone tumours-EuroBoNeT. Available from: http://www.eurobonet.eu/ (accessed 22.07.2009).

  33. Connective Tissue Cancer Network (Conticanet). Available from: www.conticanet.eu (accessed 19.07.2009).

  34. Blay JY, Bonvalot S and Fayette J et al (2006). Neoadjuvant chemotherapy in sarcoma. Bull Cancer 93: 1093–1098

    PubMed  Google Scholar 

  35. Bollini G, Kalifa C, Panuel M, et al. (2006). Malignant bone tumours in children and adolescents. Arch Pediatr, 13: 669–671

    Google Scholar 

  36. Brauner R, Trivin C and Zerah M et al (2006). Diencephalic syndrome due to hypothalamic tumor: a model of the relationship between weight and puberty onset. J Clin Endocrinol Metab 91: 2467–2473

    Article  CAS  PubMed  Google Scholar 

  37. Casanova M, Ferrari A and Collini P et al (2006). Epitheloid sarcoma in children and adolescents: a report from the Italian soft tissue sarcoma committee. Cancer 106: 708–717

    Article  PubMed  Google Scholar 

  38. Cohen-Haguenauer O, Peault B and Bauche C et al (2006). In vivo repopulation ability of genetically corrected mone marrow cells from Fanconi anemia patients. Proc Natl Acad Sci USA 103: 2340–2345

    Article  CAS  PubMed  Google Scholar 

  39. Coindre JM, Hostein I and Terrier P et al (2006). Diagnosis of clear cell sarcoma by real-time reverse transcriptase-polymerase chain reaction analysis of paraffin embedded tissues: clinicopathologic and molecular analysis of 44 patients from the French sarcoma group. Cancer 107: 1055–1064

    Article  CAS  PubMed  Google Scholar 

  40. Deraedt K, Debiec-Rychter M and Sciot R. (2006). Radiation-associated synovial sarcoma of the lung following radiotherapy for pulmonary metastasis of Wilms’ tumour. Histopathology 48: 473–475

    Article  CAS  PubMed  Google Scholar 

  41. Vermeulen J, Ballet S and Oberlin O et al (2006). Incidence and prognostic value of tumour cells detected by RT-PCR in peripheral blood stem cell collections from patients withewing tumour. Br J Cancer 95: 1326–1333

    Article  CAS  PubMed  Google Scholar 

  42. Williamson D, Lu YJ and Fang C et al (2006). Nascent pre-rRNA overexpression correlates with an adverse prognosis in alveolar rhabdomyosarcoma. Genes Chromosomes Cancer 45: 839–45

    Article  CAS  PubMed  Google Scholar 

  43. Blay JY. (2007). Chemotherapy for osteosarcoma without high-dose methotrexate: another piece in the puzzle. Onkologie 30: 226–227

    Article  PubMed  Google Scholar 

  44. Castex MP, Rubie H and Stevens MC et al (2007). Extraosseus localized Ewing tumors: improved outcome with anthracyclines – the French society of pediatric oncology and international society of pediatric oncology. J Clin Oncol 25: 1176–1182

    Article  CAS  PubMed  Google Scholar 

  45. Jurgens B, Hainz U, Fuchs D, et al. Interferon-gamma triggered indoleamine 2,3-dioxygenase competence in human monocyte-derived dentritic cells induces regulatory activity in allogeneic T cells. Blood, 2009, (in press).

  46. Dohnal AM, Graffi S and Witt V et al (2009). Comparative evaluation of techniques for the manufacturing of dendritic cell-based cancer vaccines. J Cell Mol Med 13: 125–135

    Article  CAS  PubMed  Google Scholar 

  47. Dohnal AM, Witt V and Huegel H et al (2007). Phase I study of tumor Ag-loaded IL-12 secreting semimature DC for the treatment of pediatric cancer. Cytotherapy 9: 755–770

    Article  CAS  PubMed  Google Scholar 

  48. Huettner KG, Breuer SK and Paul P et al (2005). Generation of potent antitumor immunity in mice by interleukin-12-secreting dendritic cells.Cancer Immunol Immunother 54: 67–77

    Article  CAS  Google Scholar 

  49. Felzmann T, Huettner KG and Breuer SK et al (2005). Semi-mature IL-12 secreting dendritic cells present exogenous antigen to trigger cytolytic immune responses. Cancer Immunol Immunother 54: 769–780

    Article  CAS  PubMed  Google Scholar 

  50. Felzmann T, Witt V and Wimmer D et al (2003). Monocyte enrichment from leukapheresis products for the generation of DCs by plastic adherence, or by positive or negative selection. Cytotherapy 5: 391–398

    Article  CAS  PubMed  Google Scholar 

  51. Lehner M, Stoeckl J and Majdic O et al (2003). MHC class II antigen signaling induces homotypic and heterotypic cluster formation of human mature monocyte derived dendritic cells in the absence of cell death. Hum Immunol 64: 762–770

    Article  CAS  PubMed  Google Scholar 

  52. Felzmann T, Gadner H and Holter W. (2002). Dendritic cells as adjuvants in antitumor immune therapy. Onkologie 25: 456–464

    Article  CAS  PubMed  Google Scholar 

  53. Diagnostic approaches to chimerism testing after allogenic stem cell transplantation for early detection of graft rejection and relapse: technical development, standardization, and european coordinated clinical implementation (EUROCHIMERISM). Available from: http://cordis.europa.eu/search/index.cfm?fuseaction=proj.document&PJ_LANG=EN&PJ_RCN=5699376&pid=0&q=936AE63E4 6F931AAF36BD4383FB4056A&type=sim (accessed 06.10.2009).

  54. Lion T, Watzinger F and Steward C. (2006). The RSD code: proposal for a nomenclature of allelic configurations in STR-PCR-based chimerism testing after allogeneic stem cell transplantation. Leukemia 20: 1448–1452

    Article  PubMed  Google Scholar 

  55. SIOP European Neuroblastoma Research Network (SIOPEN-R-NET). Available from: https://www.siopen-r-net.org (accessed 17.07.2009).

  56. Vermeulen J, De Preter K and Naranjo A et al (2009). Predicting outcomes for children with neuroblastoma using a multigene-expression signature: a retrospective SIOPEN/COG/GPOH study. Lancet Oncol 10: 663–671

    Article  CAS  PubMed  Google Scholar 

  57. Schreier G, Messmer J and Rauchegger G et al (2009). A web-based platform for interdisciplinary biomedical research. Front Biosci 14: 2738–2746

    Article  PubMed  Google Scholar 

  58. Canete A, Gerrard M and Rubie H et al (2009). Poor survival for infants with MYCN-amplified metastatic neuroblastoma despite intensified treatment: the International Society of Paediatric Oncology European Neuroblastoma Experience. J Clin Oncol 27: 1014–1019

    Article  PubMed  Google Scholar 

  59. De Bernardi B, Gerrard M and Boni L et al (2009). Excellent outcome with reduced treatment for infants with disseminated neuroblastoma without MYCN gene amplification. J Clin Oncol 27: 1034–1040

    Article  PubMed  Google Scholar 

  60. Ambros PF, Ambros IM and Brodeur GM et al (2009). International consensus for neuroblastoma molecular diagnostics: report from the International Neuroblastoma Risk Group (INRG) Biology Committee. Br J Cancer 100: 1471–1482

    Article  CAS  PubMed  Google Scholar 

  61. Beiske K, Burchill SA and Cheung IY et al (2009). INRG task force. Consensus criteria for sensitive detection of minimal neuroblastoma cells in bone marrow, blood and stem cell preparations by immunocytology and QRT-PCR: recommendations by the International Neuroblastoma Risk Group Task Force. Br J Cancer 100: 1627–1637

    Article  CAS  PubMed  Google Scholar 

  62. Cohn SL, Pearson AD and London WB et al (2009). INRG Task Force. The International Neuroblastoma Risk Group (INRG) classification system: an INRG Task Force report. J Clin Oncol 27: 289–297

    Article  PubMed  Google Scholar 

  63. Monclair T, Brodeur GM and Ambros PF et al (2009). INRG task force. The International Neuroblastoma Risk Group (INRG) staging system: an INRG Task Force report. J Clin Oncol 27: 298–303

    Article  PubMed  Google Scholar 

  64. De Bernardi B, Mosseri V and Rubie H et al (2008). SIOP Europe Neuroblastoma Group Treatment of localised resectable neuroblastoma Results of the LNESG1 study by the SIOP Europe Neuroblastoma Group. Br J Cancer 99: 1027–1033

    Article  CAS  PubMed  Google Scholar 

  65. Viprey VF, Corrias MV and Kagedal B et al (2007). Standardisation of operating procedures for the detection of minimal disease by QRT-PCR in children with neuroblastoma: quality assurance on behalf of SIOPEN-RNET. Eur J Cancer 43: 341–350

    Article  CAS  PubMed  Google Scholar 

  66. Navarro S, Amann G and Beiske K et al (2006). European Study Group 94.01 Trial and Protocol. Prognostic value of International Neuroblastoma Pathology Classification in localized resectable peripheral neuroblastic tumors: a histopathologic study of localized neuroblastoma European Study Group 94.01 Trial and Protocol. J Clin Oncol 24: 695–699

    Article  PubMed  Google Scholar 

  67. Swerts K, Ambros PF and Brouzes C et al (2005). Standardization of the immunocytochemical detection of neuroblastoma cells in bone marrow. J Histochem Cytochem 53: 1433–1440

    Article  CAS  PubMed  Google Scholar 

  68. Zeng Y, Fest S and Kunert R et al (2005). Anti-neuroblastoma eff ect of ch14.18 antibody produced in CHO cells is mediated by NK-cells in mice. Mol Immunol, 42: 1311–1319

    Article  CAS  Google Scholar 

  69. Ambros IM, Benard J and Boavida M et al (2003). Quality assessment of genetic markers used for therapy stratification. J Clin Oncol 21: 2077–2084

    Article  CAS  PubMed  Google Scholar 

  70. European Research Area (ERA) Net. Available from http://cordis.europa.eu/fp7/coordination/about_co_en.html (accessed 21.07.2009).

  71. Innovative Medicines Initiative (IMI). Available from: http://imi.europa.eu/index.html (accessed (03.08.2009)).

  72. Tallen G, Dworzak M, Gadner M, et al. Imperative of continual support by the European Community for future advances in paediatric oncology in Europe: Meeting report of the EC-funded science-communication project DIRECT “Overcoming Cancer with Research". memo, accepted for publication November 2009.

  73. Haupt R. Long-term survival of pediatric cancer patients: cure and care. International Symposium on Past Successes and Future Challenges in Pediatric Oncology, Vienna, Austria, May 15–17, 2008. (abstr. # 2)

  74. Masera G. Aftercare of pediatric cancer patients. International Symposium on Past Successes and Future Challenges in Pediatric Oncology, Vienna, Austria, May 15–17, 2008. (abstr. # 1)

  75. Cure Search. Available at: http://www.childrensoncologygroup.org/disc/LE/default.htm (accessed 27.07.2009)

  76. The Information Portal on Paediatric Oncology of the German Society for Paediatric Oncology/Haematology (GPOH). Available at: http://www.kinderkrebsinfo.de (accessed August 30th, 2009).

  77. EUROCAN+PLUS initiative. Available from: http://www.eurocanplus.org (accessed 24.07.2009).

  78. Magnani C, Pastore G, Coebergh JW, et al. Trends in survival after childhood cancer in Europe, 1978–1997: report from the Automated Childhood Cancer Information System project (ACCIS). Eur J Cancer, 42: 1981–2995, 2006.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ursula Creutzig MD.

Additional information

G. Tallen, M. Dworzak, as well as H. Gadner and Ursula Creutzig contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tallen, G., Dworzak, M., Gadner, H. et al. More and better cure for an orphan: priorities for future paediatric cancer research in Europe – Meeting report of the EC-funded science-communication project DIRECT “Overcoming Cancer with Research”. memo 2, 246–254 (2009). https://doi.org/10.1007/s12254-009-0169-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12254-009-0169-8

Keywords

Navigation