Skip to main content
Log in

Proteomics, a new tool to monitor cancer therapy?

  • Review
  • Published:
memo - Magazine of European Medical Oncology Aims and scope Submit manuscript

Summary

Cancer proteomics is a rapidly developing field and promises to accelerate the discovery of new diagnostic, prognostic and therapy-related biomarkers. Increasingly, the mechanisms of action of cancer drugs are defined at the molecular level. The possibility of detecting hundreds and thousands of proteins at the same point of time is a tool to define proteins associated with response or resistance to therapy. This strategy has been applied successfully in cell culture models and is implemented as translational research tool in early clinical trials of new anti-cancer agents. This review aims to summarize basic concepts and techniques of proteome analysis, its challenges and limitations, and discusses the opportunities for cancer therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adam B, Qu Y, Davis J, Ward M, et al. Serum protein fingerprinting coupled with a pattern-matching algorithm distinguishes prostate cancer from benign prostate hyperplasia and healthy men. Cancer Res, 62: 3609–3614, 2002

    PubMed  CAS  Google Scholar 

  • Aebersold R, Goodlett D. Mass spectrometry in proteomics. Chem Rev, 101: 269–295, 2001

    Article  PubMed  CAS  Google Scholar 

  • Borrebaeck C. Antibody microarray-based oncoproteomics. Expert Opin Biol Ther, 6: 833–838, 2006

    Article  PubMed  CAS  Google Scholar 

  • Cayatte C, Pons C, Guigonis J, et al. Protein profiling of rat ventral prostate following chronic finasteride administration: identification and localization of a novel putative androgen-regulated protein. Mol Cell Proteomics, 5: 2031–2043, 2006

    Article  PubMed  CAS  Google Scholar 

  • Cho W. Contribution of oncoproteomics to cancer biomarker discovery. Mol Cancer, 6: 25, 2007

    Article  PubMed  Google Scholar 

  • Corthals G, Aebersold R, Goodlett D. Identification of phosphorylation sites using microimmobilized metal affinity chromatography. Methods Enzymol, 405: 66–81, 2005

    Article  PubMed  CAS  Google Scholar 

  • Cravatt B, Simon G, Yates Jr. The biological impact of mass-spectrometry-based proteomics. Nature, 450: 991–1000, 2007

    Article  PubMed  CAS  Google Scholar 

  • Brown DPG, Gökmen-Polar Y, Jiang L, et al. A comparative proteomic study to characterize the vinblastine resistance in human ovarian cancer cells. Proteomics Clin Appl, 1: 18–31, 2007

    Article  CAS  Google Scholar 

  • Fitzpatrick DPG, You JS, Bemis KG, et al. Searching for potential biomarkers of cisplatin resistance in human ovarian cancer using a label-free LC/MS-based protein quantification method. Proteomics Clin Appl, 1: 246–263, 2007

    Article  CAS  Google Scholar 

  • Espina V, Wulfkuhle J, Calvert V, et al. Reverse phase protein microarrays for monitoring biological responses. Methods Mol Biol, 383: 321–336, 2007

    Article  PubMed  CAS  Google Scholar 

  • Friedman D, Lilley K. Optimizing the Difference Gel Electrophoresis (DIGE) technology. Methods Mol Biol, 428: 93–124, 2007

    Article  Google Scholar 

  • Goshe M. Characterizing phosphoproteins and phosphoproteomes using mass spectrometry. Brief Funct Genomic Proteomic, 4: 363–376, 2006

    Article  PubMed  CAS  Google Scholar 

  • Görg A, Weiss W, Dunn M. Current two-dimensional electrophoresis technology for proteomics. Proteomics, 4: 3665–3685, 2004

    Article  PubMed  Google Scholar 

  • Pollard HB, Srivastava M, Eidelmann O, et al. Protein microarray platforms for clinical proteomics. Proteomics Clin Appl, 1: 934–952, 2007

    Article  CAS  Google Scholar 

  • Hochstrasser D. Proteome in perspective. Clin Chem Lab Med, 36: 825–836, 1998

    Article  PubMed  CAS  Google Scholar 

  • Koopmann J, Zhang Z, White N, et al. Serum diagnosis of pancreatic adenocarcinoma using surface-enhanced laser desorption and ionization mass spectrometry. Clin Cancer Res, 10: 860–868, 2004

    Article  PubMed  CAS  Google Scholar 

  • Korf U, Wiemann S. Protein microarrays as a discovery tool for studying protein–protein interactions. Expert Rev Proteomics, 2: 13–26, 2005

    Article  PubMed  CAS  Google Scholar 

  • Loeffler-Ragg J, Skvortsov S, Sarg B, et al. Gefitinib-responsive EGFR-positive colorectal cancers have different proteome profiles from non-responsive cell lines. Eur J Cancer, 41: 2338–2346, 2005

    Article  PubMed  CAS  Google Scholar 

  • McDonald T, Sheng S, Stanley B, et al. Expanding the subproteome of the inner mitochondria using protein separation technologies: one- and two-dimensional liquid chromatography and two-dimensional gel electrophoresis. Mol Cell Proteomics, 5: 2392–2411, 2006

    Article  PubMed  CAS  Google Scholar 

  • Morandell S, Stasyk T, Grosstessner-Hain K, et al. Phosphoproteomics strategies for the functional analysis of signal transduction. Proteomics, 6: 4047–4056, 2006

    Article  PubMed  CAS  Google Scholar 

  • Mustafa D, Kros J, Luider T. Combining laser capture microdissection and proteomics techniques. Methods Mol Biol, 428: 159–178, 2008

    Article  PubMed  CAS  Google Scholar 

  • Negroni L, Samson M, Guigonis J, et al. Treatment of colon cancer cells using the cytosine deaminase/5-fluorocytosine suicide system induces apoptosis, modulation of the proteome, and Hsp90beta phosphorylation. Mol Cancer Ther, 6: 2747–2756, 2007

    Article  PubMed  CAS  Google Scholar 

  • Nyman T. The role of mass spectrometry in proteome studies. Biomol Eng, 18: 221–227, 2001

    Article  PubMed  CAS  Google Scholar 

  • Ornstein D, Rayford W, Fusaro V, et al. Serum proteomic profiling can discriminate prostate cancer from benign prostates in men with total prostate specific antigen levels between 2.5 and 15.0 ng/ml. J Urol, 172: 1302–1305, 2004

    Article  PubMed  CAS  Google Scholar 

  • Petricoin ER, Ornstein D, Paweletz C, et al. Serum proteomic patterns for detection of prostate cancer. J Natl Cancer Inst, 94: 1576–1578, 2002

    PubMed  CAS  Google Scholar 

  • Posadas E, Kwitkowski V, Kotz H, et al. A prospective analysis of imatinib-induced c-KIT modulation in ovarian cancer: a phase II clinical study with proteomic profiling. Cancer, 110: 309–317, 2007

    Article  PubMed  CAS  Google Scholar 

  • Qu Y, Adam B, Yasui Y, Ward M, et al. Boosted decision tree analysis of surface-enhanced laser desorption/ionization mass spectral serum profiles discriminates prostate cancer from noncancer patients. Clin Chem, 48: 1835–1843, 2002

    PubMed  CAS  Google Scholar 

  • Sanda T, Okamoto T, Uchida Y, et al. Proteome analyses of the growth inhibitory effects of NCH-51, a novel histone deacetylase inhibitor, on lymphoid malignant cells. Leukemia, 21: 2344–2353, 2007

    Article  PubMed  CAS  Google Scholar 

  • Seibert V, Ebert M, Buschmann T. Advances in clinical cancer proteomics: SELDI-ToF-mass spectrometry and biomarker discovery. Brief Funct Genomic Proteomic, 4: 16–26, 2005

    Article  PubMed  CAS  Google Scholar 

  • Skvortsov S, Sarg B, Loeffler-Ragg J, et al. Different proteome pattern of epidermal growth factor receptor-positive colorectal cancer cell lines that are responsive and nonresponsive to C225 antibody treatment. Mol Cancer Ther, 3: 1551–1558, 2004

    PubMed  CAS  Google Scholar 

  • Skvortsov S, Skvortsova I, Sarg B, et al. Irreversible pan-ErbB tyrosine kinase inhibitor CI-1033 induces caspase-independent apoptosis in colorectal cancer DiFi cell line. Apoptosis, 10: 1175–1186, 2005

    Article  PubMed  CAS  Google Scholar 

  • Smith F, Gallagher W, Fox E, et al. Combination of SELDI-TOF-MS and data mining provides early-stage response prediction for rectal tumors undergoing multimodal neoadjuvant therapy. Ann Surg, 245: 259–266, 2007

    Article  PubMed  Google Scholar 

  • Smith L, Welham K, Watson M, et al. The proteomic analysis of cisplatin resistance in breast cancer cells. Oncol Res, 16: 497–506, 2007

    Article  PubMed  CAS  Google Scholar 

  • Sreekumar A, Nyati M, Varambally S, et al. Profiling of cancer cells using protein microarrays: discovery of novel radiation-regulated proteins. Cancer Res, 61: 7585–7593, 2001

    PubMed  CAS  Google Scholar 

  • Stasyk T, Huber L. Zooming in: fractionation strategies in proteomics. Proteomics, 4: 3704–3716, 2004

    Article  PubMed  CAS  Google Scholar 

  • Venter J, Adams M, Myers E, et al. The sequence of the human genome. Science, 291: 1304–1351, 2001

    Article  PubMed  CAS  Google Scholar 

  • Whiteley G. Proteomic patterns for cancer diagnosis-promise and challenges. Mol Biosys, 2: 358–363, 2006

    Article  CAS  Google Scholar 

  • Wingren C, Borrebaeck C. Progress in miniaturization of protein arrays – a step closer to high-density nanoarrays. Drug Discov Today, 12: 813–819, 2007

    Article  PubMed  CAS  Google Scholar 

  • Yang Y, Zhang S, Howe K, et al. A comparison of nLC-ESI-MS/MS and nLC-MALDI-MS/MS for GeLC-based protein identification and iTRAQ-based shotgun quantitative proteomics. J Biomol Tech, 18: 226–237, 2007

    PubMed  Google Scholar 

  • Zhang Z, Bast RJ, Yu Y, et al. Three biomarkers identified from serum proteomic analysis for the detection of early stage ovarian cancer. Cancer Res, 64: 5882–5890, 2004

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Loeffler-Ragg.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Loeffler-Ragg, J., Sarg, B., Mueller, D. et al. Proteomics, a new tool to monitor cancer therapy?. memo 1, 129–136 (2008). https://doi.org/10.1007/s12254-008-0048-8

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12254-008-0048-8

Keywords

Navigation