Skip to main content

Advertisement

Log in

Autophagy Suppression Accelerates Apoptosis Induced by Norcantharidin in Cholangiocarcinoma

  • Original Article
  • Published:
Pathology & Oncology Research

Abstract

Norcantharidin is a cantharidin demethylated analog with antitumor effects in many tumors, including cholangiocarcinoma. Autophagy suppression is known to increase chemosensitivity in cholangiocarcinoma. This study aimed to determine whether autophagy suppression accelerates apoptosis induced by norcantharidin in human cholangiocarcinoma cells. The human cholangiocarcinoma cell line QBC939 was incubated in RPMI 1640 medium with or without norcantharidin. Autophagy was induced using HBSS media with Ca2+ and Mg2+ supported by 10 mM HEPES or suppressed by treatment with 3-MA or transfection with siRNA against Atg5. The comparison was drawn between these conditions in mitochondrial membrane potential disturbance, the levels of reactive oxygen species (ROS), apoptotic proteins, and apoptosis. Cholangiocarcinoma cell apoptosis was accelerated by norcantharidin. Autophagy suppression up-regulated norcantharidin’s pro-apoptotic effect, but autophagy induction weakened it. As apoptosis was accelerated, ROS production was up-regulated. Bax protein expression, cytochrome c levels and localization, mitochondrial membrane disturbance, and the levels of caspase-9, caspase-3, and cleaved PARP were higher when autophagy was suppressed, and all of those were down-regulated when autophagy was induced. To sum up, it was found that norcantharidin induced cholangiocarcinoma cell death, and autophagy suppression enhanced the pro-apoptotic action of norcantharidin, which appears to involve the mitochondrial apoptosis pathway activation and ROS generation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

LC3-II:

light chain 3-II

NCTD:

norcantharidin

3-MA:

3-methyladenine

HBSS:

Hank’s balanced salt solution

ROS:

reactive oxygen species

References

  1. Walden D, Kunnimalaiyaan S, Sokolowski K, Clark TG, Kunnimalaiyaan M (2017) Antiproliferative and apoptotic effects of xanthohumol in cholangiocarcinoma. Oncotarget 8:88069–88078

    Article  Google Scholar 

  2. Guan L, Zhang L, Gong Z, Hou X, Xu Y, Feng X, Wang H, You H (2016) FoxO3 inactivation promotes human cholangiocarcinoma tumorigenesis and chemoresistance through Keap1-Nrf2 signaling. Hepatology 63:1914–1927

    Article  CAS  Google Scholar 

  3. Zhang H, Yang T, Wu M, Shen F (2016) Intrahepatic cholangiocarcinoma: epidemiology, risk factors, diagnosis and surgical management. Cancer Lett 379:198–205

    Article  CAS  Google Scholar 

  4. Hu MH, Chen LJ, Chen YL, Tsai MS, Shiau CW, Chao TI, Liu CY, Kao JH, Chen KF (2017) Targeting SHP-1-STAT3 signaling: a promising therapeutic approach for the treatment of cholangiocarcinoma. Oncotarget 8:65077–65089

    Article  Google Scholar 

  5. Roskoski R Jr (2017) ROS1 protein-tyrosine kinase inhibitors in the treatment of ROS1 fusion protein-driven non-small cell lung cancers. Pharmacol Res 121:202–212

    Article  CAS  Google Scholar 

  6. Thanee M, Loilome W, Techasen A, Sugihara E, Okazaki S, Abe S, Ueda S, Masuko T, Namwat N, Khuntikeo N, Titapun A, Pairojkul C, Saya H, Yongvanit P (2016) CD44 variant-dependent redox status regulation in liver fluke-associated cholangiocarcinoma: a target for cholangiocarcinoma treatment. Cancer Sci 107:991–1000

    Article  CAS  Google Scholar 

  7. Wang X, Yu S, Jia Q, Chen L, Zhong J, Pan Y, Shen P, Shen Y, Wang S, Wei Z, Cao Y, Lu Y (2017) NiaoDuQing granules relieve chronic kidney disease symptoms by decreasing renal fibrosis and anemia. Oncotarget 8:55920–55937

    Article  Google Scholar 

  8. Fu H, Wu R, Li Y, Zhang L, Tang X, Tu J, Zhou W, Wang J, Shou Q (2016) Safflower yellow prevents pulmonary metastasis of breast Cancer by inhibiting tumor cell Invadopodia. Am J Chin Med 44:1491–1506

    Article  CAS  Google Scholar 

  9. Xiao W, Wu K, Yin M, Han S, Ding Y, Qiao A, Lu G, Deng B, Bo P, Gong W (2015) Wogonin inhibits tumor-derived regulatory molecules by suppressing STAT3 signaling to promote tumor immunity. J Immunother 38:167–184

    Article  CAS  Google Scholar 

  10. Chang C, Zhu YQ, Mei JJ, Liu SQ, Luo J (2010) Involvement of mitochondrial pathway in NCTD-induced cytotoxicity in human hepG2 cells. J Exp Clin Cancer Res 29:145

    Article  Google Scholar 

  11. Han W, Wang S, Liang R, Wang L, Chen M, Li H, Wang Y (2013) Non-ionic surfactant vesicles simultaneously enhance antitumor activity and reduce the toxicity of cantharidin. Int J Nanomedicine 8:2187–2196

    PubMed  PubMed Central  Google Scholar 

  12. Yeh CB, Su CJ, Hwang JM, Chou MC (2010) Therapeutic effects of cantharidin analogues without bridging ether oxygen on human hepatocellular carcinoma cells. Eur J Med Chem 45:3981–3985

    Article  CAS  Google Scholar 

  13. Sakahira H, Enari M, Nagata S (2015) Corrigendum: cleavage of CAD inhibitor in CAD activation and DNA degradation during apoptosis. Nature 526:728

    Article  CAS  Google Scholar 

  14. Rautou PE, Mansouri A, Lebrec D, Durand F, Valla D, Moreau R (2010) Autophagy in liver diseases. J Hepatol 53:1123–1134

    Article  CAS  Google Scholar 

  15. Moretti J, Roy S, Bozec D, Martinez J, Chapman JR, Ueberheide B et al (2017) STING senses microbial viability to orchestrate stress-mediated autophagy of the endoplasmic reticulum. Cell 171 e13:809–823

    Article  Google Scholar 

  16. Xiong X, Wu M, Zhang H, Li J, Lu B, Guo Y et al (2015) Atg5 SiRNA inhibits autophagy and enhances norcantharidin-induced apoptosis in hepatocellular carcinoma. Int J Oncol 47:1321–1328

    Article  CAS  Google Scholar 

  17. Hou YJ, Dong LW, Tan YX, Yang GZ, Pan YF, Li Z, Tang L, Wang M, Wang Q, Wang HY (2011) Inhibition of active autophagy induces apoptosis and increases chemosensitivity in cholangiocarcinoma. Lab Investig 91:1146–1157

    Article  CAS  Google Scholar 

  18. Settembre C, Di Malta C, Polito VA, Garcia Arencibia M, Vetrini F, Erdin S et al (2011) TFEB links autophagy to lysosomal biogenesis. Science 332:1429–1433

    Article  CAS  Google Scholar 

  19. Carchman EH, Rao J, Loughran PA, Rosengart MR, Zuckerbraun BS (2011) Heme oxygenase-1-mediated autophagy protects against hepatocyte cell death an hepatic injury from infection/sepsis in mice. Hepatology 53:2053–2062

    Article  CAS  Google Scholar 

  20. Lewis JS, Meeke K, Osipo C, Ross EA, Kidawi N, Li T, Bell E, Chandel NS, Jordan VC (2005) Intrinsic mechanism of estradiol-induced apoptosis in breast cancer cells resistant to estrogen deprivation. J Natl Cancer Inst 97:1746–1175

    Article  CAS  Google Scholar 

  21. Mavros MN, Economopoulos KP, Alexiou VG, Pawlik TM (2014) Treatment and prognosis for patients with intrahepatic cholangiocarcinoma: systematic review and meta-analysis. JAMA Surg 149:565–574

    Article  Google Scholar 

  22. Lau SH, Lau WY (2012) Current therapy of hilar cholangiocarcinoma. Hepatobiliary Pancreat Dis Int 11:12–17

    Article  CAS  Google Scholar 

  23. Estrabaud E, De Muynck S, Asselah T (2011) Activation of unfolded protein response and autophagy during HCV infection modulates innate immune response. J Hepatol 55:1150–1153

    Article  CAS  Google Scholar 

  24. Tai H, Wang Z, Gong H, Han X, Zhou J, Wang XN et al (2017) Autophagy impairment with lysosomal and mitochondrial dysfunction is an important characteristic of oxidative stress-induced senescence. Autophagy 13:99–113

    Article  CAS  Google Scholar 

  25. Toshima T, Shirabe K, Fukuhara T, Ikegami T, Yoshizumi T, Soejima Y, Ikeda T, Okano S, Maehara Y (2014) Suppression of autophagy during liver regeneration impairs energy charge and hepatocyte senescence in mice. Hepatology 60:290–300

    Article  CAS  Google Scholar 

  26. Whitehead NP (2016) Enhanced autophagy as a potential mechanism for the improved physiological function by simvastatin in muscular dystrophy. Autophagy 12:705–706

    Article  CAS  Google Scholar 

  27. Xie SQ, Zhang YH, Li Q, Xu FH, Miao JW, Zhao J, Wang CJ (2012) 3-nitro-naphthalimide and nitrogen mustard conjugate NNM-25 induces hepatocellular carcinoma apoptosis via PARP-1/p53 pathway. Apoptosis 17:725–734

    Article  CAS  Google Scholar 

  28. Qi F, Inagaki Y, Gao B, Cui X, Xu H, Kokudo N et al (2012) Bufalin and cinobufagin induce apoptosis of human hepatocellular carcinoma cells via Fas- and mitochondria-mediated pathways. Cancer Sci 102:951–958

    Article  Google Scholar 

  29. Shen B, He PJ, Shao CL (2013) Norcantharidin induced DU145 cell apoptosis through ROS-mediated mitochondrial dysfunction and energy depletion. PLoS One 8:e84610

    Article  Google Scholar 

  30. Zhao L, Yang G, Bai H, Zhang M, Mou D (2017) NCTD promotes Birinapant-mediated anticancer activity in breast cancer cells by downregulation of c-FLIP. Oncotarget 8:26886–26895

    Article  Google Scholar 

  31. Fang EF, Scheibye-Knudsen M, Brace LE, Kassahun H, SenGupta T, Nilsen H, Mitchell JR, Croteau DL, Bohr VA (2014) Defective mitophagy in XPA via PARP-1 hyperactivation and NAD(+)/SIRT1 reduction. Cell 157:882–896

    Article  CAS  Google Scholar 

  32. Choi BM, Chen XY, Gao SS, Zhu R, Kim BR (2011) Anti-apoptotic effect of phloretin on cisplatin-induced apoptosis in HEI-OC1 auditory cells. Pharmacol Rep 63:708–716

    Article  CAS  Google Scholar 

  33. Prenek L, Boldizsár F, Kugyelka R, Ugor E, Berta G, Németh P, Berki T (2017) The regulation of the mitochondrial apoptotic pathway by glucocorticoid receptor in collaboration with Bcl-2 family proteins in developing T cells. Apoptosis 22:239–253

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The study was financed by grants from the National Science Foundation of China (81670570), Key research and development program of Jiangsu Province (BE2016789).

Author information

Authors and Affiliations

Authors

Contributions

YW, XL, WJ, CJ and XX conception and design, or analysis and interpretation of data; YW, WJ, CJ, XX, HG and QT drafting the article; XL is the guarantor for the article.

Corresponding author

Correspondence to Xiangcheng Li.

Ethics declarations

Conflict of Interest

No conflict of interest was declared by the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Jiang, W., Li, C. et al. Autophagy Suppression Accelerates Apoptosis Induced by Norcantharidin in Cholangiocarcinoma. Pathol. Oncol. Res. 26, 1697–1707 (2020). https://doi.org/10.1007/s12253-019-00719-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12253-019-00719-9

Keywords

Navigation