Skip to main content

The Small Bowel Cancer Incidence Enigma

Abstract

Although the small bowel is a vast organ with a highly proliferative epithelium, the incidence of small bowel cancers is surprisingly low. Many factors could be involved in this unexpected cancer incidence, including difficult access to the exploration of the small bowel mucosa, which might lead to missed diagnoses of non-obstructive and non-bleeding small tumours. Moreover, possible factors that influence the low incidence include more efficient machinery of DNA replication and DNA repair enzymes, peculiarities in microbiota components, competence of the immune system, and the speed of intestinal transit. Importantly, the answer for the enigmatic risk of driver mutations caused by replication errors may be hidden in the small bowel, which is an obscure part of digestive tract that is usually inaccessible by endoscopic or colonoscopic conventional investigations. These observations warrant the necessity of an urgent exploration of small bowel features, including the evaluation of DNA replication controls and expression of DNA repair genes, in order to shed light on these obscure events.

This is a preview of subscription content, access via your institution.

References

  1. Kato M, Kimura K, Hirakawa A, Kobayashi Y, Ishida R, Kamihira O, Majima T, Funahashi Y, Sassa N, Matsukawa Y, Hattori R, Gotoh M, Tsuzuki T (2018) Prognostic parameter for high risk prostate cancer patients at initial presentation. Prostate 78:11–16. https://doi.org/10.1002/pros.23438

    CAS  Article  PubMed  Google Scholar 

  2. Sun YS, Zhao Z, Yang ZN, Xu F, Lu HJ, Zhu ZY, Shi W, Jiang J, Yao PP, Zhu HP (2017) Risk factors and preventions of breast Cancer. Int J Biol Sci 13:1387–1397. https://doi.org/10.7150/ijbs.21635

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  3. Khan N, Afaq F, Mukhtar H (2010) Lifestyle as risk factor for cancer: evidence from human studies. Cancer Lett 293:133–143. https://doi.org/10.1016/j.canlet.2009.12.013

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  4. Tomasetti C, Li L, Vogelstein B (2017) Stem cell divisions, somatic mutations, cancer etiology, and cancer prevention. Science 355:1330–1334. https://doi.org/10.1126/science.aaf9011

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  5. Eun K, Ham SW, Kim H (2017) Cancer stem cell heterogeneity: origin and new perspectives on CSC targeting. BMB Rep 50:117–125

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  6. Sell S (2010) On the stem cell origin of cancer. Am J Pathol 176:2584–2494. https://doi.org/10.2353/ajpath.2010.091064

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  7. Vassilev A, DePamphilis ML (2017) Links between DNA replication, stem cells and Cancer. Genes (Basel) 8:45. https://doi.org/10.3390/genes8020045

    CAS  Article  Google Scholar 

  8. Kunkel TA, Bebenek K (2000) DNA replication fidelity. Annu Rev Biochem 69:497–529. https://doi.org/10.1146/annurev.biochem.69.1.497

    CAS  Article  PubMed  Google Scholar 

  9. Andrianova MA, Bazykin GA, Nikolaev SI, Seplyarskiy VB (2017) Human mismatch repair system balances mutation rates between strands by removing more mismatches from the lagging strand. Genome Res 27:1336–1343. https://doi.org/10.1101/gr.219915.116

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  10. Hass CS, Gakhar L, Wold MS (2010) Functional characterization of a cancer causing mutation in human replication protein a. Mol Cancer Res 8:1017–1026. https://doi.org/10.1158/1541-7786.MCR-10-0161

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  11. Taylor EM, Lindsay HD (2016) DNA replication stress and cancer: cause or cure? Future Oncol 12:221–237. https://doi.org/10.2217/fon.15.292

    CAS  Article  PubMed  Google Scholar 

  12. Torgovnick A, Schumacher B (2015) DNA repair mechanisms in cancer development and therapy. Front Genet 6(157). https://doi.org/10.3389/fgene.2015.00157

  13. Barbari SR, Shcherbakova PV (2017) Replicative DNA polymerase defects in human cancers: consequences, mechanisms, and implications for therapy. DNA Repair (Amst) 56:16–25. https://doi.org/10.1016/j.dnarep.2017.06.003

    CAS  Article  PubMed Central  Google Scholar 

  14. Harris RS (2013) Cancer mutation signatures, DNA damage mechanisms, and potential clinical implications. Genome Med 5:87. https://doi.org/10.1186/gm490

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  15. Rycaj K, Tang DG (2015) Cell-of-origin of cancer versus cancer stem cells: assays and interpretations. Cancer Res 75:4003–4011. https://doi.org/10.1158/0008-5472.CAN-15-0798

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  16. Kreso A, Dick JE (2014) Evolution of the cancer stem cell model. Cell Stem Cell 14:275–291. https://doi.org/10.1016/j.stem.2014.02.006

    CAS  Article  PubMed  Google Scholar 

  17. Andersson-Rolf A, Zilbauer M, Koo BK, Clevers H (2017) Stem cells in repair of gastrointestinal epithelia. Physiology (Bethesda) 32:278–289. https://doi.org/10.1152/physiol.00005.2017

    CAS  Article  PubMed Central  Google Scholar 

  18. Sarosiek T, Stelmaszuk M (2018) Small intestine neoplasms. Pol Merkur Lekarski 44:45–48

    PubMed  Google Scholar 

  19. Taylor S, Lobo AJ (2016) Diagnosis and treatment of inflammatory bowel disease. Practitioner 260:19–23

    PubMed  Google Scholar 

  20. Cloyd JM, George E, Visser BC (2016) Duodenal adenocarcinoma: Advances in diagnosis and surgical management. World J Gastrointest Surg 8:212–221. https://doi.org/10.4240/wjgs.v8.i3.212

    Article  PubMed  PubMed Central  Google Scholar 

  21. Bhandari A, Woodhouse M, Gupta S (2017) Colorectal cancer is a leading cause of cancer incidence and mortality among adults younger than 50 years in the USA: a SEER-based analysis with comparison to other young-onset cancers. J Investig Med 65:311–315. https://doi.org/10.1136/jim-2016-000229

    Article  PubMed  Google Scholar 

  22. Marley AR, Nan H (2016) Epidemiology of colorectal cancer. Int J Mol Epidemiol Genet 7:105–114

    PubMed  PubMed Central  Google Scholar 

  23. Talseth-Palmer BA (2017) The genetic basis of colonic adenomatous polyposis syndromes. Hered Cancer Clin Pract 15(5):5. https://doi.org/10.1186/s13053-017-0065-x

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  24. Leoz ML, Carballal S, Moreira L, Ocaña T, Balaguer F (2015) The genetic basis of familial adenomatous polyposis and its implications for clinical practice and risk management. Appl Clin Genet 8:95–107. https://doi.org/10.2147/TACG.S51484

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  25. Jackstadt R, Sansom OJ (2016) Mouse models of intestinal cancer. J Pathol 238:141–151. https://doi.org/10.1002/path.4645

    Article  PubMed  Google Scholar 

  26. Kopáčová M, Rejchrt S, Bureš J, Tachecí I (2013) Small intestinal Tumours. Gastroenterol Res Pract 2013(702536):1–7. https://doi.org/10.1155/2013/702536

    Article  Google Scholar 

  27. Han YF, Zhang QZ (1995) An analysis of 36 cases of primary tumor of the small bowel. Tumor 15:406–407

    Google Scholar 

  28. Ferlay J, Soerjomataram I, Ervik M, Dikshit R, Eser S, Mathers C, Rebelo M, Parkin DM, Forman D, Bray F (2013) GLOBOCAN 2012 v1.0, Cancer incidence and mortality worldwide: IARC CancerBase no. 11 [internet]. Lyon, France: International Agency for Research on. Cancer. Available from: http://globocan.iarc.fr. Accessed 11 February 2019

  29. Lauren P (1965) The two histological main types of gastric carcinoma: diffuse and so-called intestinal-type carcinoma. An attempt at a histo-clinical classification. Acta Pathol Microbiol Scand 64:31–49

    CAS  Article  PubMed  Google Scholar 

  30. Correa P, Piazuelo MB (2012) The gastric precancerous cascade. J Dig Dis 13:2–9

    Article  PubMed  PubMed Central  Google Scholar 

  31. Fu DG (2015) Epigenetic alterations in gastric cancer (review). Mol Med Rep 12:3223–3230. https://doi.org/10.3892/mmr.2015.3816

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  32. Yoon H, Kim N (2015) Diagnosis and management of high risk group for gastric cancer. Gut Liver 9:5–17. https://doi.org/10.5009/gnl14118

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  33. González CA, Sanz-Anquela JM, Companioni O, Bonet C, Berdasco M, López C, Mendoza J, Martín-Arranz MD, Rey E, Poves E, Espinosa L, Barrio J, Torres MÁ, Cuatrecasas M, Elizalde I, Bujanda L, Garmendia M, Ferrández Á, Muñoz G, Andreu V, Paules MJ, Lario S, Ramírez MJ, Study group, Gisbert JP (2016) Incomplete type of intestinal metaplasia has the highest risk to progress to gastric cancer: results of the Spanish follow-up multicenter study. J Gastroenterol Hepatol 31:953–958. https://doi.org/10.1111/jgh.13249

    Article  PubMed  Google Scholar 

  34. Gomez JM, Wang AY (2014) Gastric intestinal metaplasia and early gastric cancer in the west: a changing paradigm. Gastroenterol Hepatol (N Y) 10:369–378

    Google Scholar 

  35. Correa P, Piazuelo MB (2010) Wilson KT (2010) pathology of gastric intestinal metaplasia: clinical implications. Am J Gastroenterol 105:493–498. https://doi.org/10.1038/ajg.2009.728

    Article  PubMed  PubMed Central  Google Scholar 

  36. Park YH, Kim N (2015) Review of atrophic gastritis and intestinal metaplasia as a premalignant lesion of gastric cancer. J Cancer Prev 20:25–40. https://doi.org/10.15430/JCP.2015.20.1.25

    Article  PubMed  PubMed Central  Google Scholar 

  37. Law R, Varayil JE, WongKeeSong LM, Fidler J, Fletcher JG, Barlow J, Alexander J, Rajan E, Hansel S, Becker B, Larson JJ, Enders FT, Bruining DH, Coelho-Prabhu N (2017) Assessment of multi-modality evaluations of obscure gastrointestinal bleeding. World J Gastroenterol 23:614–621. https://doi.org/10.3748/wjg.v23.i4.614

    Article  PubMed  PubMed Central  Google Scholar 

  38. Kim BS, Li BT, Engel A, Samra JS, Clarke S, Norton ID, Li AE (2014) Diagnosis of gastrointestinal bleeding: a practical guide for clinicians. World J Gastrointest Pathophysiol 5:467–478. https://doi.org/10.4291/wjgp.v5.i4.467

    Article  PubMed  PubMed Central  Google Scholar 

  39. Strik C, Stommel MW, Schipper LJ, van Goor H, Ten Broek RP (2016) Risk factors for future repeat abdominal surgery. Langenbeck's Arch Surg 401:829–837. https://doi.org/10.1007/s00423-016-1414-3

    Article  Google Scholar 

  40. Ferguson HJ, Ferguson CI, Speakman J, Ismail T (2015) Management of intestinal obstruction in advanced malignancy. Ann Med Surg (Lond) 4:264–270. https://doi.org/10.1016/j.amsu.2015.07.018

    Article  Google Scholar 

  41. Pironi L, Arends J, Baxter J, Bozzetti F, Peláez RB, Cuerda C, Forbes A, S8 G, Gillanders L, Holst M, Jeppesen PB, Joly F, Kelly D, Klek S, Irtun Ø, Olde Damink SW, Panisic M, Rasmussen HH, Staun M, Szczepanek K, Van Gossum A, Wanten G, Schneider SM, Shaffer J Home Artificial Nutrition & Chronic Intestinal Failure; acute intestinal failure special interest groups of ESPEN (2015) ESPEN endorsed recommendations. Definition and classification of intestinal failure in adults. Clin Nutr 34:171–180. https://doi.org/10.1016/j.clnu.2014.08.017

    Article  PubMed  Google Scholar 

  42. Thomas S, Izard J, Walsh E, Batich K, Chongsathidkiet P, Clarke G, Sela DA, Muller AJ, Mullin JM, Albert K, Gilligan JP, DiGuilio K, Dilbarova R, Alexander W, Prendergast GC (2017) The host microbiome regulates and maintains human health: a primer and perspective for non-microbiologists. Cancer Res 77:1783–1812. https://doi.org/10.1158/0008-5472.CAN-16-2929

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  43. Shreiner AB, Kao JY, Young VB (2015) The gut microbiome in health and in disease. Curr Opin Gastroenterol 31:69–75. https://doi.org/10.1097/MOG.0000000000000139

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  44. Francescone R, Hou V, Grivennikov SI (2014) Microbiome, inflammation, and cancer. Cancer J 20:181–189. https://doi.org/10.1097/PPO.0000000000000048

    CAS  Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We acknowledge Federal University of Pará (PROPESP and Fadesp) for technical support. National Council for Scientific and Technological Development (CNPq), Coordination for Enhancement of Higher Education Personnel (CAPES) and Amazonia Research Foundation (FAPESPA) for financial and fellowship support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paulo Assumpção.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Assumpção, P., Khayat, A., Araújo, T. et al. The Small Bowel Cancer Incidence Enigma. Pathol. Oncol. Res. 26, 635–639 (2020). https://doi.org/10.1007/s12253-019-00682-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12253-019-00682-5

Keywords

  • Small bowel cancer
  • Low incidence
  • DNA repair
  • Enigma