Skip to main content

Advertisement

Log in

Interaction of Breast Cancer and Insulin Resistance on PD1 and TIM3 Expression in Peripheral Blood CD8 T Cells

  • Original Article
  • Published:
Pathology & Oncology Research

Abstract

Epidemiological evidence points to a link between insulin resistance (IR) and breast cancer (BrCA). Insulin plays a role in CD8+ T cells (CD8T) differentiation and function and affects adipocytokines levels. CD8T activity in BrCA is associated with favorable outcome; while PD1 and TIM3 are markers of CD8T exhaustion and play critical roles in the negative regulation of T cell responses. Patients with (BrCA) have high expression levels of PD1 on circulating. Therefore, we hypothesized that BrCA and IR could affect PD1 and/or TIM3 expression on circulating CD8T. We determine PD1 and TIM3 expression on CD8T and analyze the relationship of CD8T phenotype with serum insulin and plasma adipocytokines levels in the different groups. We enrolled four groups of treatment-naive patients: women without neoplasms (Neo-)/without IR (IR-), Neo−/with IR (IR+), BrCa/IR- and BrCa/IR+. We found interactions between BrCA and IR with respect to TIM3 on naïve and central memory (CM) CD8T subsets. Furthermore, BrCA had a greater PD1 + TIM3- CD8T frequency in CD8T subsets than Neo-. IR+ presented a significantly lower PD1 + TIM3- frequency in CD8T subsets compare to Non-IR. In addition, we found a negative correlation between insulin levels, HOMA and frequency of PD1 + TIM3- in CD8T and a positive correlation between adiponectin levels and the frequency PD1 + TIM3- in CD8T. The increased expression of PD1 on different subsets of CD8T from BrCa patients is consistent with immunological tolerance, whereas IR has a contrary effect. IR could have a deleterious role in the activation of CD8T that can be relevant to new BrCa immunotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Sun Y-S, Zhao Z, Yang Z-N, Xu F, Lu HJ, Zhu ZY, Shi W, Jiang J, Yao PP, Zhu HP (2017) Risk Factors and Preventions of Breast Cancer. Int J Biol Sci 13:1387–1397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Sun W, Lu J, Wu S, Bi Y, Mu Y, Zhao J, Liu C, Chen L, Shi L, Li Q, Yang T, Yan L, Wan Q, Liu Y, Wang G, Luo Z, Tang X, Chen G, Huo Y, Gao Z, Su Q, Ye Z, Wang Y, Qin G, Deng H, Yu X, Shen F, Chen L, Zhao L, Wang T, Sun J, Xu M, Xu Y, Chen Y, Dai M, Zhang J, Zhang D, Lai S, Li D, Ning G, Wang W (2016) Association of insulin resistance with breast, ovarian, endometrial and cervical cancers in non-diabetic women. Am J Cancer Res 6:2334–2344

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Gunter MJ, Xie X, Xue X, Kabat GC, Rohan TE, Wassertheil-Smoller S, Ho GYF, Wylie-Rosett J, Greco T, Yu H, Beasley J, Strickler HD (2015) Breast cancer risk in metabolically healthy but overweight postmenopausal women. Cancer Res 75:270–274, Breast Cancer Risk in Metabolically Healthy but Overweight Postmenopausal Women

  4. Nam S, Park S, Park HS, Kim S, Kim JY, Kim SI (2016) Association between insulin resistance and luminal B subtype breast cancer in postmenopausal women. Medicine (Baltimore) 95:e2825

    Article  CAS  Google Scholar 

  5. Shanik MH, Xu Y, Skrha J, Dankner R, Zick Y, Roth J (2008) Insulin resistance and hyperinsulinemia: is hyperinsulinemia the cart or the horse? Diabetes Care Suppl 2:S262-S268

  6. Arcidiacono B, Iiritano S, Nocera A et al (2012) Insulin resistance and cancer risk: An Overview of the pathogenetic mechanisms. Exp Diabetes Res 2012:789174

  7. Yadav A, Kataria MA, Saini V, Yadav A (2013) Role of leptin and adiponectin in insulin resistance. Clin Chim Acta 18(417):80–84

    Article  CAS  Google Scholar 

  8. Paz-Filho G, Mastronardi C, Wong ML, Licinio J (2012) Leptin therapy, insulin sensitivity, and glucose homeostasis. Indian J Endocrinol Metab 16(Suppl 3):S549–S555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Paz-Filho G, Lim EL, Wong ML, Licinio J (2011) Associations between adipokines and obesity-related cancer. Front Biosci (Landmark Ed) 16:1634–1650

    Article  CAS  Google Scholar 

  10. Ali HR, Provenzano E, Dawson SJ, Blows FM, Liu B, Shah M, Earl HM, Poole CJ, Hiller L, Dunn JA, Bowden SJ, Twelves C, Bartlett JMS, Mahmoud SMA, Rakha E, Ellis IO, Liu S, Gao D, Nielsen TO, Pharoah PDP, Caldas C (2014) Association between CD8+ infiltration and breast cancer survival in 12, 439 patients. Ann Oncol 25:1536–1543

    Article  CAS  PubMed  Google Scholar 

  11. Matsumot H, Thike AA, Li H et al (2016) Increased CD4 and CD8-positive T cell infiltrate signifies good prognosis in a subset of triple-negative breast cancer. Breast Cancer Res Treat 156:237–247

    Article  CAS  Google Scholar 

  12. Fischer HJ, Sie C, Schumnn E et al (2017) The insulin receptor plays a critical role in T cell function and adaptive immunity. J Immunol 198:1910–1920

    Article  CAS  PubMed  Google Scholar 

  13. Han JM, Patterson SJ, Speck M, Ehses JA, Levings MK (2014) Insulin inhibits IL-10-mediated regulatory T cell function: implications for obesity. J Immunol 192:623–629

    Article  CAS  PubMed  Google Scholar 

  14. Granados HM, Draghi A 2nd, Tsurutani N et al (2017) Programmed cell death-1, PD-1, is dysregulated in T cells from children with new onset type 1 diabetes. PLoS One 12:e0183887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Buchbinder EI, Desai A (2016) CTLA-4 and PD-1 pathways: similarities, differences, and implications of their inhibition. Am J Clin Oncol 39:98–106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Jin HT, Ahmed R, Okazaki T (2011) Role of PD-1 in regulating T-cell immunity. Curr Top Microbiol Immunol 350:17–37

    CAS  PubMed  Google Scholar 

  17. Keir ME, Butte MJ, Freeman GJ, Sharpe AH (2008) PD-1 and its ligands in tolerance and immunity. Annu Rev Immunol 26:677–704

    Article  CAS  PubMed  Google Scholar 

  18. Sharpe AH, Pauken KE (2018) The diverse functions of the PD1 inhibitory pathway. Nat Rev Immunol 18:153–167

    Article  CAS  PubMed  Google Scholar 

  19. Muenst S, Soysal SD, Gao F, Obermann EC, Oertli D, Gillanders WE (2013) The presence of programmed death 1 (pd-1) positive tumor-infiltrating lymphocytes is associated with poor prognosis in human breast cancer. Breast Cancer Res Treat 139:667–676

    Article  CAS  PubMed  Google Scholar 

  20. Ghebeh H, Mohammed S, Al-Omair A et al (2006) The B7-H1 (PD-L1) T lymphocyte-inhibitory molecule is expressed in breast cancer patients with infiltrating ductal carcinoma: correlation with important high-risk prognostic factors. Neoplasia 8:190–198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Poschke I, De Boniface J, Mao Y, Kiessling R (2012) Tumor-induced changes in the phenotype of blood-derived and tumor-associated T cells of early stage breast cancer patients. Int J Cancer 131:1611–1620

    Article  CAS  PubMed  Google Scholar 

  22. Wherry EJ, Kurachi M (2015) Molecular and cellular insights into T cell exhaustion. Nat Rev Immunol 15:486–499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Okoye IS, Houghton M, Tyrrell L, Barakat K, Elahi S (2017) Coinhibitory Receptor Expression and Immune Checkpoint Blockade: Maintaining a Balance in CD8+ T Cell Responses to Chronic Viral Infections and Cancer. Front Immunol 8:1215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Fourcade J, Sun Z, Benallaoua M, Guillaume P, Luescher IF, Sander C, Kirkwood JM, Kuchroo V, Zarour HM (2010) Upregulation of TIM3 and PD-1 expression is associated with tumor antigen-specific CD8+T cell dysfunction in melanoma patients. J Exp Med 207:2175–2186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Gorman JV, Colgan JD (2014) Regulation of T cell responses by the receptor molecule Tim-3. Immunol Res 59:56–65

  26. Fuertes-Marraco SA, Neubert NJ, Verdeil G, Speiser DE (2015) Inhibitory receptors beyond T cell exhaustion. Front Immunol 6:310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kuss I, Schaefer C, Godfrey TE, Ferris RL, Harris JM, Gooding W, Whiteside TL (2005) Recent thymic emigrants and subsets of naïve and memory T cells in the circulation of patients with head and neck cancer. Clin Immunol 116:27–36

    Article  PubMed  Google Scholar 

  28. Anderson AC (2012) Tim-3, a negative regulator of anti-tumor immunity. Curr Opin Immunol 24:213–216

    Article  CAS  PubMed  Google Scholar 

  29. Zhang Y, Cai P, Li L, Shi L, Chang P, Liang T, Yang Q, Liu Y, Wang L, Hu L (2017) Co-expression of TIM-3 and CEACAM1 promotes T cell exhaustion in colorectal cancer patients. Int Immunopharmacol 43:210–218

    Article  CAS  PubMed  Google Scholar 

  30. Liu H, Zhi L, Duan N, Su P (2016) Abnormal expression of Tim-3 antigen on peripheral blood T cells is associated with progressive disease in osteosarcoma patients. FEBS Open Bio 6:807–815

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Wu J, Liu C, Qin S, Hou H (2013) The expression of Tim3 in peripheral blood of ovarian cancer. DNA Cell Biol 32:648–653

    Article  CAS  PubMed  Google Scholar 

  32. Avery L, Filderman J, Szymczak-Worman AL, Kane LP (2018) Tim-3 co-stimulation promotes short-term effector T cells, restricts memory precursors and is dispensable for T cell exhaustion. Proc Natl Acad Sci U S A 115(10):2455–2460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Qiu Y, Chen J, Liao H et al (2012) Tim-3-expressing CD4(+) and CD8(+) T cells in human tuberculosis (TB) exhibit polarized effector memory phenotypes and stronger anti-TB effector functions. PLoS Pathog 8:e1002984

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Gorman JV, Starbeck-Miller G, Pham NL et al (2014) Tim-3 directly enhances CD8 T cell responses to acute Listeria monocytogenes infection. J Immunol 192:3133–3142

    Article  CAS  PubMed  Google Scholar 

  35. Meggyes M, Miko E, Polgar B, Bogar B, Farkas B, Illes Z, Szereday L (2014) Peripheral blood TIM-3 positive NK and CD8+ T cells throughout pregnancy: TIM3/galectin-9 interaction and its possible role during pregnancy. PLoS One 9:e92371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Nishimura S, Manabe I, Nagasaki M, Eto K, Yamashita H, Ohsugi M, Otsu M, Hara K, Ueki K, Sugiura S, Yoshimura K, Kadowaki T, Nagai R (2009) CD8+ effector T cells contribute to macrophage recruitment and adipose tissue inflammation in obesity. Nat Med 15:914–920

    Article  CAS  PubMed  Google Scholar 

  37. DeNardo DG, Coussens LM (2007) Inflammation and breast cancer. Balancing immune response: crosstalk between adaptive and innate immune cells during breast cancer progression. Breast Cancer Res 9:212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Pierce BL, Ballard-Barbash R, Bernstein L, Baumgartner RN, Neuhouser ML, Wener MH, Baumgartner KB, Gilliland FD, Sorensen BE, McTiernan A, Ulrich CM (2009) Elevated biomarkers of inflammation are associated with reduced survival among breast cancer patients. J Clin Oncol 27:3437–3444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Patsoukis N, Bardhan K, Chatterjee P, Sari D, Liu B, Bell LN, Karoly ED, Freeman GJ, Petkova V, Seth P, Li L, Boussiotis VA (2015) PD-1 alters T-cell metabolic reprogramming by inhibiting glycolysis and promoting lipolysis and fatty acid oxidation. Nat Commun 6:6692

    Article  CAS  PubMed  Google Scholar 

  40. Maeda N, Shimomura I, Kishida K et al (2002) Diet-induced insulin resistance in mice lacking adiponectin/ACRP30. Nat Med 8(7):731–737

    Article  CAS  PubMed  Google Scholar 

  41. Yadav A, Jyoti P, Jain SK, Bhattacharjee J (2011) Correlation of adiponectin and leptin with insulin resistance: a pilot study in healthy north Indian population. Indian J Clin Biochem 26(2):193–196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Osegbe I, Okpara H, Azinge E (2016) Relationship between serum leptin and insulin resistance among obese Nigerian women. Ann Afr Med 15(1):14–9

  43. Carbone F, La Rocca C, Matarese G (2012) Immunological functions of leptin and adiponectin. Biochimie 94(10):2082–8, 2088

  44. Tsang JY, Li D, Ho D, Peng J et al (2011) Novel immunomodulatory effects of adiponectin on dendritic cell functions. Int Immunopharmacol 11(5):604–609

    Article  CAS  PubMed  Google Scholar 

  45. Rodríguez L, Graniel J, Ortiz R (2007) Effect of leptin on activation and cytokine synthesis in peripheral blood lymphocytes of malnourished infected children. Clin Exp Immunol 148(3):478–485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Miriam Victoria Martín Manzo is a doctoral student from Programa de Doctorado en Ciencias Biomédicas, Universidad Nacional Autónoma de México (UNAM) and received fellowship 243633 from Consejo Nacional de Ciencia y Tecnología (CONACYT). This paper is part of her doctoral thesis.

The authors wish to thank Dra. Concepción Agundis-Mata and Dra. Gabriela Gutiérrez for general laboratory facilities, as well as PhD Enrique Ortega, PhD Erasmo Martínez and PhD Ali Pereyra for critical review. They highly appreciate the help of M.Sc. Carlos Castellanos Barba and the LabNalCit-UNAM (CONACYT). In addition, they thank to Neyla Baltazar from Hospital General de México “Dr. Eduardo Liceaga” for blood sample collection and metabolic parameters determination.

Funding

This study was funded by Consejo Nacional de Ciencia y Tecnología FOSISS-233471, SEP-134341 and internal resources of the “Programa Institucional de Cáncer de Mama” (IIB). Work in SM’s lab is supported by NHI-R01A1119131.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joselin Hernandez.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Approval

The study was approved by the ethical and research committees of the General ospital of Mexico “Dr. Eduardo Liceaga” (DI/15/UME/03/47 and DI/12/III/4/30). All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed Consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 1006 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martín-Manzo, M.V., Lara, C., Vargas-de-Leon, C. et al. Interaction of Breast Cancer and Insulin Resistance on PD1 and TIM3 Expression in Peripheral Blood CD8 T Cells. Pathol. Oncol. Res. 25, 1233–1243 (2019). https://doi.org/10.1007/s12253-019-00610-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12253-019-00610-7

Keywords

Navigation