Skip to main content

Advertisement

Log in

The Infiltration of ICOS+ Cells in Nasopharyngeal Carcinoma is Beneficial for Improved Prognosis

  • Original Article
  • Published:
Pathology & Oncology Research

Abstract

Nasopharyngeal carcinoma (NPC) is a highly malignant tumor, associated with poor patient prognoses, and high rates of morbidity and mortality. Currently, immune checkpoint therapy has brought new treatment strategy for NPC. The inducible T cell co-stimulator (ICOS) belongs to the B7-CD28 immunoglobulin superfamily, which is currently the subject of intense study due to great successes gained in treatment of different malignancies by disrupting their family members. However, the role of ICOS played in NPC remains poorly understood. Immunohistochemistry (IHC) was stained with the ICOS specific antibody and ICOS expression is decreased in patients with either lymphatic or distant metastasis and inversely associated with TNM stage of NPC patients. Importantly, high ICOS expression is significantly correlated with overall survival (OS) of NPC patients (N = 185, p < 0.001), and ICOS expression is also proved to be an independent prognostic factor by multivariate analysis. Surgical excised fresh NPC specimens (N = 185) were homogenized to analyze the specific cytokine expression by ELISA assay. ICOS expression level is associated with increased cytotoxic T lymphocyte number and high interferon IFNγ expression, the characteristics of Th1 cells. In addition, the correlation between the percentage of ICOS+ T cells in tumor tissue and survival was detected. Conclusively, expression of ICOS is associated with improved survival in NPC and percentage of ICOS+ cells acting as Th1 cells in primary tumor tissue may be a clinical biomarker for good prognosis of NPC patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Lee AW, Ma BB, Ng WT, Chan AT (2015) Management of nasopharyngeal carcinoma: current practice and future perspective. J Clin Oncol 33(29):3356–3364. https://doi.org/10.1200/JCO.2015.60.9347

    Article  CAS  PubMed  Google Scholar 

  2. Mao YP, Xie FY, Liu LZ, Sun Y, Li L, Tang LL, Liao XB, Xu HY, Chen L, Lai SZ, Lin AH, Liu MZ, Ma J (2009) Re-evaluation of 6th edition of AJCC staging system for nasopharyngeal carcinoma and proposed improvement based on magnetic resonance imaging. Int J Radiat Oncol Biol Phys 73(5):1326–1334. https://doi.org/10.1016/j.ijrobp.2008.07.062

    Article  PubMed  Google Scholar 

  3. Zheng L, Cao C, Cheng G, Hu Q, Chen X (2017) Cytomembranic PD-L1 expression in locoregionally advanced nasopharyngeal carcinoma. Onco Targets Ther 10:5483–5487. https://doi.org/10.2147/OTT.S152007

    Article  PubMed  PubMed Central  Google Scholar 

  4. Hua YJ, Han F, Lu LX, Mai HQ, Guo X, Hong MH, Lu TX, Zhao C (2012) Long-term treatment outcome of recurrent nasopharyngeal carcinoma treated with salvage intensity modulated radiotherapy. Eur J Cancer 48(18):3422–3428. https://doi.org/10.1016/j.ejca.2012.06.016

    Article  PubMed  Google Scholar 

  5. Kong L, Wang L, Shen C, Hu C, Wang L, Lu JJ (2016) Salvage Intensity-Modulated Radiation Therapy (IMRT) for locally recurrent nasopharyngeal cancer after definitive IMRT: a novel scenario of the modern era. Sci Rep 6:32883. https://doi.org/10.1038/srep32883

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Chen C, Fee W, Chen J, Chan C, Khong B, Hara W, Goffinet D, Li D, Le QT (2014) Salvage treatment for locally recurrent nasopharyngeal carcinoma (NPC). Am J Clin Oncol 37(4):327–331. https://doi.org/10.1097/COC.0b013e318277d804

    Article  CAS  PubMed  Google Scholar 

  7. Karam I, Huang SH, McNiven A, Su J, Xu W, Waldron J, Bayley AJ, Kim J, Cho J, Ringash J, Hope A, Chen E, Chan B, Goldstein D, O'Sullivan B, Giuliani ME (2016) Outcomes after reirradiation for recurrent nasopharyngeal carcinoma: north American experience. Head Neck 38(Suppl 1):E1102–E1109. https://doi.org/10.1002/hed.24166

    Article  PubMed  Google Scholar 

  8. Zhang Y, Luo Y, Qin SL, Mu YF, Qi Y, Yu MH, Zhong M (2016) The clinical impact of ICOS signal in colorectal cancer patients. Oncoimmunology 5(5):e1141857. https://doi.org/10.1080/2162402X.2016.1141857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Sharpe AH, Freeman GJ (2002) The B7-CD28 superfamily. Nat Rev Immunol 2(2):116–126. https://doi.org/10.1038/nri727

    Article  CAS  PubMed  Google Scholar 

  10. Ceeraz S, Nowak EC, Noelle RJ (2013) B7 family checkpoint regulators in immune regulation and disease. Trends Immunol 34(11):556–563. https://doi.org/10.1016/j.it.2013.07.003

    Article  CAS  PubMed  Google Scholar 

  11. Swallow MM, Wallin JJ, Sha WC (1999) B7h, a novel costimulatory homolog of B7.1 and B7.2, is induced by TNFalpha. Immunity 11(4):423–432

    Article  CAS  Google Scholar 

  12. Faget J, Bendriss-Vermare N, Gobert M, Durand I, Olive D, Biota C, Bachelot T, Treilleux I, Goddard-Leon S, Lavergne E, Chabaud S, Blay JY, Caux C, Menetrier-Caux C (2012) ICOS-ligand expression on plasmacytoid dendritic cells supports breast cancer progression by promoting the accumulation of immunosuppressive CD4+ T cells. Cancer Res 72(23):6130–6141. https://doi.org/10.1158/0008-5472.CAN-12-2409

    Article  CAS  PubMed  Google Scholar 

  13. Faget J, Sisirak V, Blay JY, Caux C, Bendriss-Vermare N, Menetrier-Caux C (2013) ICOS is associated with poor prognosis in breast cancer as it promotes the amplification of immunosuppressive CD4+ T cells by plasmacytoid dendritic cells. Oncoimmunology 2(3):e23185. https://doi.org/10.4161/onci.23185

    Article  PubMed  PubMed Central  Google Scholar 

  14. Hutloff A, Dittrich AM, Beier KC, Eljaschewitsch B, Kraft R, Anagnostopoulos I, Kroczek RA (1999) ICOS is an inducible T-cell co-stimulator structurally and functionally related to CD28. Nature 397(6716):263–266. https://doi.org/10.1038/16717

    Article  CAS  PubMed  Google Scholar 

  15. McAdam AJ, Chang TT, Lumelsky AE, Greenfield EA, Boussiotis VA, Duke-Cohan JS, Chernova T, Malenkovich N, Jabs C, Kuchroo VK, Ling V, Collins M, Sharpe AH, Freeman GJ (2000) Mouse inducible costimulatory molecule (ICOS) expression is enhanced by CD28 costimulation and regulates differentiation of CD4+ T cells. J Immunol 165(9):5035–5040

    Article  CAS  Google Scholar 

  16. Akbari O, Stock P, Meyer EH, Freeman GJ, Sharpe AH, Umetsu DT, DeKruyff RH (2008) ICOS/ICOSL interaction is required for CD4+ invariant NKT cell function and homeostatic survival. J Immunol 180(8):5448–5456

    Article  CAS  Google Scholar 

  17. Fu T, He Q, Sharma P (2011) The ICOS/ICOSL pathway is required for optimal antitumor responses mediated by anti-CTLA-4 therapy. Cancer Res 71(16):5445–5454. https://doi.org/10.1158/0008-5472.CAN-11-1138

    Article  CAS  PubMed  Google Scholar 

  18. Coyle AJ, Lehar S, Lloyd C, Tian J, Delaney T, Manning S, Nguyen T, Burwell T, Schneider H, Gonzalo JA, Gosselin M, Owen LR, Rudd CE, Gutierrez-Ramos JC (2000) The CD28-related molecule ICOS is required for effective T cell-dependent immune responses. Immunity 13(1):95–105

    Article  CAS  Google Scholar 

  19. Yoshinaga SK, Whoriskey JS, Khare SD, Sarmiento U, Guo J, Horan T, Shih G, Zhang M, Coccia MA, Kohno T, Tafuri-Bladt A, Brankow D, Campbell P, Chang D, Chiu L, Dai T, Duncan G, Elliott GS, Hui A, McCabe SM, Scully S, Shahinian A, Shaklee CL, Van G, Mak TW, Senaldi G (1999) T-cell co-stimulation through B7RP-1 and ICOS. Nature 402(6763):827–832. https://doi.org/10.1038/45582

    Article  CAS  PubMed  Google Scholar 

  20. Zhang Y, Lv D, Kim HJ, Kurt RA, Bu W, Li Y, Ma X (2013) A novel role of hematopoietic CCL5 in promoting triple-negative mammary tumor progression by regulating generation of myeloid-derived suppressor cells. Cell Res 23(3):394–408. https://doi.org/10.1038/cr.2012.178

    Article  CAS  PubMed  Google Scholar 

  21. Burris HA, Callahan MK, Tolcher AW, Kummar S, Falchook GS, Pachynski RK, Tykodi SS, Gibney GT, Seiwert TY, Gainor JF, LoRusso P, Hilbert J, Apgar JF, Hua F, Burke JM, Lazaro M, Clancy M, Ding B, Trehu EG, Yap TA (2017) Phase 1 safety of ICOS agonist antibody JTX-2011 alone and with nivolumab (nivo) in advanced solid tumors; predicted vs observed pharmacokinetics (PK) in ICONIC. J Clin Oncol 35(15_suppl):3033–3033. https://doi.org/10.1200/JCO.2017.35.15_suppl.3033

    Article  Google Scholar 

  22. Angevin E, Bauer TM, Ellis CE, Gan H, Hall R, Hansen A, Hoos A, Jewell RC, Katz J, Martin-Liberal J, Maio M, Mayes PA, Mazumdar J, Millward M, Rischin D, Schellens JH, Yadavilli S, Zhou H (2017) Abstract CT039: INDUCE-1: a phase I open-label study of GSK3359609, an ICOS agonist antibody, administered alone and in combination with pembrolizumab in patients with selected, advanced solid tumors. Cancer Res 77(13 Supplement):CT039–CT039. https://doi.org/10.1158/1538-7445.Am2017-ct039

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huifang Zhou.

Ethics declarations

Conflict of Interest

None.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, G., Xu, Y. & Zhou, H. The Infiltration of ICOS+ Cells in Nasopharyngeal Carcinoma is Beneficial for Improved Prognosis. Pathol. Oncol. Res. 26, 365–370 (2020). https://doi.org/10.1007/s12253-018-0509-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12253-018-0509-2

Keywords

Navigation