Advertisement

Pathology & Oncology Research

, Volume 24, Issue 4, pp 807–813 | Cite as

The Histone Acetylation Modifications of Breast Cancer and their Therapeutic Implications

  • Pingping Guo
  • Wenqi Chen
  • Huiyu Li
  • Meiying Li
  • Lisha Li
Review Paper
  • 195 Downloads

Abstract

The histone acetylation modifications (HAMs) influence a large number of cellular functions. They are mediated through histone acetyltransferase (HAT) and histone deacetylase (HDAC). Nowadays, people have realized that HAMs are crucial for development and prognosis of breast cancer. Investigations about abnormal HAMs in breast cancer focus on initiating molecular mechanisms in breast cancer development, identification of new biomarkers to predict breast cancer aggressiveness and the therapeutic potential. As HAMs are reversible, breast cancer may be treated by restoring HAMs to normal levels. Indeed, some HDAC inhibitors have been approved by the US Food and Drug Administration to treat certain cancers. Furthermore, HAT inhibitors, HAT activators and HDAC activators may also be used as drugs to treat breast cancer.

Keywords

Breast cancer Histone acetylation Histone deacetylation Therapy 

Notes

Acknowledgements

This study was funded by the National Natural Science Foundation of China (Grant No. 31201052), Jilin Province Science and Technology Development Program for Young Scientists Fund (Grant No. 20150520036JH), Science and Technology Projects of the Education Department of Jilin Province (Grant No. [2016]445).

Compliance with ethical standards

Conflicts of Interest

No potential conflicts of interest to disclose.

References

  1. 1.
    Santos GC Jr, da Silva AP, Feldman L, Ventura GM, Vassetzky Y, de Moura Gallo CV (2015) Epigenetic modifications, chromatin distribution and TP53 transcription in a model of breast cancer progression. J Cell Biochem 116(4):533–541.  https://doi.org/10.1002/jcb.25003 CrossRefPubMedGoogle Scholar
  2. 2.
    Thomas S, Thurn KT, Raha P, Chen S, Munster PN (2013) Efficacy of Histone Deacetylase and Estrogen Receptor Inhibition in Breast Cancer Cells Due to Concerted down Regulation of Akt. PloS one 8(7). 10.1371/journal.pone.0068973Google Scholar
  3. 3.
    Kochan DZ, Kovalchuk O (2015) Circadian disruption and breast cancer: an epigenetic link? Oncotarget 6(19):16866–16882.  https://doi.org/10.18632/oncotarget.4343 CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Rizzolo P, Silvestri V, Tommasi S, Pinto R, Danza K, Falchetti M, Gulino M, Frati P, Ottini L (2013) Male breast cancer: genetics, epigenetics, and ethical aspects. Ann Oncol: official journal of the European Society for Medical Oncology/ESMO 24 Suppl 8:viii75-viii82. doi: https://doi.org/10.1093/annonc/mdt316
  5. 5.
    Ye Q, Holowatyj A, Wu J, Liu H, Zhang LH, Suzuki T, Yang ZQ (2015) Genetic alterations of KDM4 subfamily and therapeutic effect of novel demethylase inhibitor in breast cancer. In: American Journal of Cancer Research 5 (4):1519−+Google Scholar
  6. 6.
    Yokoyama Y, Matsumoto A, Hieda M, Shinchi Y, Ogihara E, Hamada M, Nishioka Y, Kimura H, Yoshidome K, Tsujimoto M, Matsuura N (2014) Loss of histone H4K20 trimethylation predicts poor prognosis in breast cancer and is associated with invasive activity. Breast Cancer Research 16(3).  https://doi.org/10.1186/Bcr3681
  7. 7.
    Cava C, Bertoli G, Castiglioni I (2015) Integrating genetics and epigenetics in breast cancer: biological insights, experimental, computational methods and therapeutic potential, BMC Systems Biology 9.  https://doi.org/10.1186/s12918-015-0211-x
  8. 8.
    Britten A, Rossier C, Taright N, Ezra P, Bourgier C (2013) Genomic classifications and radiotherapy for breast cancer. Eur J Pharmacol 717(1-3):67-70.  https://doi.org/10.1016/j.ejphar.2012.11.069 CrossRefPubMedGoogle Scholar
  9. 9.
    Nagasawa S, Sedukhina AS, Nakagawa Y, Maeda I, Kubota M, Ohnuma S, Tsugawa K, Ohta T, Roche-Molina M, Bernal JA, Narvaez AJ, Jeyasekharan AD, Sato K (2015) LSD1 Overexpression Is Associated with Poor Prognosis in Basal-Like Breast Cancer, and Sensitivity to PARP Inhibition. PloS one 10(2).  https://doi.org/10.1371/journal.pone.0118002
  10. 10.
    Connolly R, Stearns V (2012) Epigenetics as a Therapeutic Target in Breast Cancer. J Mammary Gland Biol Neoplasia 17(3-4):191-204.  https://doi.org/10.1007/s10911-012-9263-3 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Schneider A, Chatterjee S, Bousiges O, Selvi BR, Swaminathan A, Cassel R, Blanc F, Kundu TK, Boutillier AL (2013) Acetyltransferases (HATs) as Targets for Neurological Therapeutics. Neurotherapeutics: the journal of the American Society for Experimental NeuroTherapeutics 10(4):568-588.  https://doi.org/10.1007/s13311-013-0204-7 CrossRefGoogle Scholar
  12. 12.
    Khan SI, Aumsuwan P, Khan IA, Walker LA, Dasmahapatra AK (2012) Epigenetic Events Associated with Breast Cancer and Their Prevention by Dietary Components Targeting the Epigenome. Chem Res Toxicol 25(1):61-73.  https://doi.org/10.1021/tx200378c CrossRefPubMedGoogle Scholar
  13. 13.
    Karsli-Ceppioglu S, Dagdemir A, Judes G, Ngollo M, Penault-Llorca F, Pajon A, Bignon YJ, Bernard-Gallon D (2014) Epigenetic mechanisms of breast cancer: an update of the current knowledge. Epigenomics 6(6):651-664.  https://doi.org/10.2217/Epi.14.59 CrossRefPubMedGoogle Scholar
  14. 14.
    Gajer JM, Furdas SD, Grunder A, Gothwal M, Heinicke U, Keller K, Colland F, Fulda S, Pahl H, Fichtner I, Sippl W, Jung M (2015) Histone acetyltransferase inhibitors block neuroblastoma cell growth in vivo. Oncogenesis 4.  https://doi.org/10.1038/oncsis.2014.51
  15. 15.
    Jovanovic J, Ronneberg JA, Tost J, Kristensen V (2010) The epigenetics of breast cancer. Mol Oncol 4(3):242-254.  https://doi.org/10.1016/j.molonc.2010.04.002 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Seo J, Min SK, Park HR, Kim DH, Kwon MJ, Kim LS, Ju YS (2014) Expression of Histone Deacetylases HDAC1, HDAC2, HDAC3, and HDAC6 in Invasive Ductal Carcinomas of the Breast. J Breast Cancer 17(4):323-331.  https://doi.org/10.4048/jbc.2014.17.4.323 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Muller BM, Jana L, Kasajima A, Lehmann A, Prinzler J, Budczies J, Winzer KJ, Dietel M, Weichert W, Denkert C (2013) Differential expression of histone deacetylases HDAC1, 2 and 3 in human breast cancer - overexpression of HDAC2 and HDAC3 is associated with clinicopathological indicators of disease progression. BMC Cancer 13.  https://doi.org/10.1186/1471-2407-13-215
  18. 18.
    Mawatari T, Ninomiya I, Inokuchi M, Harada S, Hayashi H, Oyama K, Makino I, Nakagawara H, Miyashita T, Tajima H, Takamura H, Fushida S, Ohta T (2015) Valproic acid inhibits proliferation of HER2-expressing breast cancer cells by inducing cell cycle arrest and apoptosis through Hsp70 acetylation. Int J Oncol 47(6):2073-2081.  https://doi.org/10.3892/ijo.2015.3213 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Falahi F, van Kruchten M, Martinet N, Hospers GAP, Rots MG (2014) Current and upcoming approaches to exploit the reversibility of epigenetic mutations in breast cancer. Breast Cancer Research 16(4).  https://doi.org/10.1186/S13058-014-0412-Z
  20. 20.
    Messier TL, Gordon JAR, Boyd JR, Tye CE, Browne G, Stein JL, Lian JB, Stein GS (2016) Histone H3 lysine 4 acetylation and methylation dynamics define breast cancer subtypes. Oncotarget 7(5):5094-5109CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Basse C, Arock M (2015) The increasing roles of epigenetics in breast cancer: Implications for pathogenicity, biomarkers, prevention and treatment. Int J Cancer 137(12):2785-2794.  https://doi.org/10.1002/ijc.29347 CrossRefPubMedGoogle Scholar
  22. 22.
    Fermento ME, Gandini NA, Lang CA, Perez JE, Maturi HV, Curino AC, Facchinetti MM (2010) Intracellular distribution of p300 and its differential recruitment to aggresomes in breast cancer (Retracted article. See vol. 94, pg. 418, 2013). Exp Mol Pathol 88 (2):256-264. doi: https://doi.org/10.1016/j.yexmp.2010.01.007
  23. 23.
    Yang H, Pinello CE, Luo J, Li DW, Wang YF, Zhao LY, Jahn SC, Saldanha SA, Planck J, Geary KR, Ma HC, Law BK, Roush WR, Hodder P, Liao DQ (2013) Small-Molecule Inhibitors of Acetyltransferase p300 Identified by High-Throughput Screening Are Potent Anticancer Agents. Mol Cancer Ther 12(5):610-620.  https://doi.org/10.1158/1535-7163.MCT-12-0930 CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Liu ZP, Luo XG, Liu L, Zhao WW, Guo S, Guo Y, Wang N, He HP, Liao XH, Ma WJ, Zhou H, Zhang TC (2013) Histone acetyltransferase p300 promotes MKL1-mediated transactivation of catechol-O-methyltransferase gene. Acta Biochim Biophys Sin 45(12):1002-1010.  https://doi.org/10.1093/abbs/gmt108 CrossRefPubMedGoogle Scholar
  25. 25.
    Derr RS, van Hoesel AQ, Benard A, Goossens-Beumer IJ, Sajet A, Dekker-Ensink NG, de Kruijf EM, Bastiaannet E, VTHBM S, van de Velde CJH, Kuppen PJK (2014) High nuclear expression levels of histone-modifying enzymes LSD1, HDAC2 and SIRT1 in tumor cells correlate with decreased survival and increased relapse in breast cancer patients. BMC Cancer 14.  https://doi.org/10.1186/1471-2407-14-604
  26. 26.
    Hervouet E, Claude-Taupin A, Gauthier T, Perez V, Fraichard A, Adami P, Despouy G, Monnien F, Algros MP, Jouvenot M, Delage-Mourroux R, Boyer-Guittaut M (2015) The autophagy GABARAPL1 gene is epigenetically regulated in breast cancer models. BMC Cancer 15.  https://doi.org/10.1186/S12885-015-1761-4
  27. 27.
    Ray A, Alalem M, Ray BK (2013) Loss of Epigenetic Kruppel-like Factor 4 Histone Deacetylase (KLF-4-HDAC)-mediated Transcriptional Suppression Is Crucial in Increasing Vascular Endothelial Growth Factor (VEGF) Expression in Breast Cancer. J Biol Chem 288(38):27232-27242.  https://doi.org/10.1074/jbc.M113.481184 CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Gong C, Qu SH, Lv XB, Liu BD, Tan WG, Nie Y, Su FX, Liu Q, Yao HR, Song EW (2014) BRMS1L suppresses breast cancer metastasis by inducing epigenetic silence of FZD10. Nature communications 5.  https://doi.org/10.1038/Ncomms6406
  29. 29.
    Cai FF, Kohler C, Zhang B, Wang MH, Chen WJ, Zhong XY (2011) Epigenetic Therapy for Breast Cancer. Int J Mol Sci 12(7):4465-4476.  https://doi.org/10.3390/ijms12074465 CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Secci D, Carradori S, Bizzarri B, Bolasco A, Ballario P, Patramani Z, Fragapane P, Vernarecci S, Canzonetta C, Filetici P (2014) Synthesis of a novel series of thiazole-based histone acetyltransferase inhibitors. Bioorg Med Chem 22(5):1680-1689.  https://doi.org/10.1016/j.bmc.2014.01.022 CrossRefPubMedGoogle Scholar
  31. 31.
    Xu LX, Li ZH, Tao YF, Li RH, Fang F, Zhao H, Li G, Li YH, Wang J, Feng X, Pan J (2014) Histone acetyltransferase inhibitor II induces apoptosis in glioma cell lines via the p53 signaling pathway. J Exp Clin Canc Res 33.  https://doi.org/10.1186/S13046-014-0108-3
  32. 32.
    Oike T, Komachi M, Ogiwara H, Amornwichet N, Saitoh Y, Torikai K, Kubo N, Nakano T, Kohno T (2014) C646, a selective small molecule inhibitor of histone acetyltransferase p300, radiosensitizes lung cancer cells by enhancing mitotic catastrophe. Radiother Oncol 111(2):222-227.  https://doi.org/10.1016/j.radonc.2014.03.015 CrossRefPubMedGoogle Scholar
  33. 33.
    Lee YH, Kwak J, Choi HK, Choi KC, Kim S, Lee J, Jun W, Park HJ, Yoon HG (2012) EGCG suppresses prostate cancer cell growth modulating acetylation of androgen receptor by anti-histone acetyltransferase activity. Int J Mol Med 30(1):69-74.  https://doi.org/10.3892/ijmm.2012.966 PubMedCrossRefGoogle Scholar
  34. 34.
    Gao CX, Bourke E, Scobie M, Famme MA, Koolmeister T, Helleday T, Eriksson LA, Lowndes NF, Brown JAL (2014) Rational design and validation of a Tip60 histone acetyltransferase inhibitor. Scientific reports 4.  https://doi.org/10.1038/Srep05372
  35. 35.
    Ye X, Yuan L, Zhang L, Zhao J, Zhang CM, Deng HY (2014) Garcinol, an acetyltransferase inhibitor, suppresses proliferation of breast cancer cell line MCF-7 promoted by 17beta-estradiol. Asian Pacific journal of cancer prevention : APJCP 15(12):5001-5007CrossRefPubMedGoogle Scholar
  36. 36.
    Federico M, Bagella L (2011) Histone Deacetylase Inhibitors in the Treatment of Hematological Malignancies and Solid Tumors. Journal of Biomedicine and Biotechnology.  https://doi.org/10.1155/2011/475641
  37. 37.
    Contreras-Leal E, Hernandez-Oliveras A, Flores-Peredo L, Zarain-Herzberg A, Santiago-Garcia J (2015) Histone deacetylase inhibitors promote the expression of ATP2A3 gene in breast cancer cell lines. Mol Carcinog.  https://doi.org/10.1002/mc.22402
  38. 38.
    Lavoie R, Bouchain G, Frechette S, Woo SH, Abou Khalil E, Leit S, Fournel M, Yan PT, Trachy-Bourget MC, Beaulieu C, Li ZM, Besterman J, Delorme D (2001) Design and synthesis of a novel class of histone deacetylase inhibitors. Bioorg Med Chem Lett 11(21):2847-2850.  https://doi.org/10.1016/S0960-894x(01)00552-2 CrossRefPubMedGoogle Scholar
  39. 39.
    Zhang T, Chen YH, Li JJ, Yang FF, Wu HG, Dai FJ, Hu MC, Lu XL, Peng Y, Liu MY, Zhao YX, Yi ZF (2014) Antitumor Action of a Novel Histone Deacetylase Inhibitor, YF479, in Breast Cancer. Neoplasia 16(8):665-677.  https://doi.org/10.1016/j.neo.2014.07.009 CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Chatterjee N, Wang WLW, Conklin T, Chittur S, Tenniswood M (2013) Histone deacetylase inhibitors modulate miRNA and mRNA expression, block metaphase, and induce apoptosis in inflammatory breast cancer cells. Cancer Biology & Therapy 14(7):658-671.  https://doi.org/10.4161/cbt.25088 CrossRefGoogle Scholar
  41. 41.
    Li LP, Sun YX, Liu JQ, Wu XD, Chen LJ, Ma L, Wu PF (2015) Histone deacetylase inhibitor sodium butyrate suppresses DNA double strand break repair induced by etoposide more effectively in MCF-7 cells than in HEK293 cells. BMC biochemistry 16.  https://doi.org/10.1186/S12858-014-0030-5Z
  42. 42.
    Lee J, Bartholomeusz C, Mansour O, Humphries J, Hortobagyi GN, Ordentlich P, Ueno NT (2014) A class I histone deacetylase inhibitor, entinostat, enhances lapatinib efficacy in HER2-overexpressing breast cancer cells through FOXO3-mediated Bim1 expression. Breast Cancer Res Treat 146(2):259-272.  https://doi.org/10.1007/s10549-014-3014-7 CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Chiu HW, Yeh YL, Wang YC, Huang WJ, Chen YA, Chiou YS, Ho SY, Lin P, Wang YJ (2013) Suberoylanilide hydroxamic acid, an inhibitor of histone deacetylase, enhances radiosensitivity and suppresses lung metastasis in breast cancer in vitro and in vivo. PLoS One 8(10):e76340.  https://doi.org/10.1371/journal.pone.0076340 CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Cody JJ, Markert JM, Hurst DR (2014) Histone deacetylase inhibitors improve the replication of oncolytic herpes simplex virus in breast cancer cells. PLoS One 9(3):e92919.  https://doi.org/10.1371/journal.pone.0092919 CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Raha P, Thomas S, Thurn KT, Park J, Munster PN (2015) Combined histone deacetylase inhibition and tamoxifen induces apoptosis in tamoxifen-resistant breast cancer models, by reversing Bcl-2 overexpression. Breast cancer research: BCR 17:26.  https://doi.org/10.1186/s13058-015-0533-z CrossRefPubMedGoogle Scholar
  46. 46.
    Min A, Im SA, Kim DK, Song SH, Kim HJ, Lee KH, Kim TY, Han SW, Oh DY, Kim TY, O'Connor MJ, Bang YJ (2015) Histone deacetylase inhibitor, suberoylanilide hydroxamic acid (SAHA), enhances anti-tumor effects of the poly (ADP-ribose) polymerase (PARP) inhibitor olaparib in triple-negative breast cancer cells. Breast Cancer Research 17.  https://doi.org/10.1186/s13058-015-0534-y
  47. 47.
    Salvador MA, Wicinski J, Cabaud O, Toiron Y, Finetti P, Josselin E, Lelievre H, Kraus-Berthier L, Depil S, Bertucci F, Collette Y, Birnbaum D, Charafe-Jauffret E, Ginestier C (2013) The Histone Deacetylase Inhibitor Abexinostat Induces Cancer Stem Cells Differentiation in Breast Cancer with Low Xist Expression. Clin Cancer Res 19(23):6520-6531.  https://doi.org/10.1158/1078-0432.CCR-13-0877 CrossRefPubMedGoogle Scholar
  48. 48.
    Kubo M, Kanaya N, Petrossian K, Ye JJ, Warden C, Liu Z, Nishimura R, Osako T, Okido M, Shimada K, Takahashi M, Chu PG, Yuan YC, Chen SA (2013) Inhibition of the proliferation of acquired aromatase inhibitor-resistant breast cancer cells by histone deacetylase inhibitor LBH589 (panobinostat). Breast Cancer Res Treat 137(1):93-107.  https://doi.org/10.1007/s10549-012-2332-x CrossRefPubMedGoogle Scholar
  49. 49.
    Dastjerdi MN, Salahshoor MR, Mardani M, Hashemibeni B, Roshankhah S (2013) The effect of CTB on P53 protein acetylation and consequence apoptosis on MCF-7 and MRC-5 cell lines. Advanced biomedical research 2:24.  https://doi.org/10.4103/2277-9175.108005 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Arányi Lajos Foundation 2018

Authors and Affiliations

  1. 1.The Key Laboratory of Pathobiology, Ministry of Education, Norman Bethune Medical CollegeJilin UniversityChangchunChina

Personalised recommendations