p38 Expression and Modulation of STAT3 Signaling in Oral Cancer

  • I. Gkouveris
  • N. Nikitakis
  • A. Sklavounou
Original Article


p38 protein belongs to Mitogen-activated protein kinases family that link extracellular stimuli with intracellular responses participating in numerous of fundamental cell processes. Persistent activation of STAT3 has been associated with cell proliferation, differentiation and apoptosis in oral squamous cell carcinoma (OSCC). This study examines the effects of p38 modulation on STAT3 signaling and cellular activities in OSCC cells and investigates possible correlation of p38 expression with tumor degree of differentiation. Phospho-p38 immunostaining was performed in 60 OSCC including well, moderately and poorly differentiated tumors. Semiquantitative analysis was used, by calculating intensity, percentage and combined scores. Protein expression levels of STAT3 (total, tyrosine and serine phosphorylated), p38 and cyclin D1 were assessed in two OSCC cell lines. p38 inhibition was achieved by pharmacological agent(SB2023580). Cell proliferation and viability rates were also evaluated. Phospho-p38 immunoexpression was intense in almost all tumor specimens, nevertheless did not correlate with tumor differentiation. Inhibition of p38 with SB203580 did not appear to affect tyrosine or serine phosphorylated STAT3 as well as cyclin D1 levels in both cell lines. Moreover, p38 inhibition resulted in mild dose-dependent decreases in cell growth and viability in both cell lines. p38 is highly expressed in OSCC but does not seem to mediate the oncogenic STAT3 pathway. However, changes found in proliferation and viability may suggest that p38 functions as potent regulator of HNSCC. Understanding the complexity of p38 signaling and cross-talk between other major molecules, may guide the development of novel pharmacologic therapies for cancer treatment and prevention.


p38 STAT3 Oral cancer Tumor grade 



All authors listed above have contributed significantly to implementation, analysis, interpretation of the data and general presentation of the manuscript.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.


  1. 1.
    El Jamal SM, Taylor EB, Abd Elmageed ZY, Alamodi AA, Selimovic D, Alkhateeb A, Hannig M, Hassan SY, Santourlidis S, Friedlander PL, Haikel Y, Vijaykumar S, Kandil E, Hassan M (2016) Interferon gamma-induced apoptosis of head and neck squamous cell carcinoma is connected to indoleamine-2,3-dioxygenase via mitochondrial and ER stress-associated pathways. Cell Div 11:11. CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Gkouveris I, Nikitakis N, Karanikou M, Rassidakis G, Sklavounou A (2016) JNK1/2 expression and modulation of STAT3 signaling in oral cancer. Oncol Lett 12(1):699–706. CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Molinolo AA, Amornphimoltham P, Squarize CH, Castilho RM, Patel V, Gutkind JS (2009) Dysregulated molecular networks in head and neck carcinogenesis. Oral Oncol 45(4–5):324–334. CrossRefPubMedGoogle Scholar
  4. 4.
    Chin D, Boyle GM, Porceddu S, Theile DR, Parsons PG, Coman WB (2006) Head an neck cancer: past, present and future. Expert Rev Anticancer Ther 6(7):1111–1118. CrossRefPubMedGoogle Scholar
  5. 5.
    Gkouveris I, Nikitakis N, Sauk J (2015) STAT3 signaling in cancer. J Cancer Ther 6(8):709–726CrossRefGoogle Scholar
  6. 6.
    Mali SB (2015) Review of STAT3 (signal transducers and activators of transcription) in head and neck cancer. Oral Oncol 51(6):565–569. CrossRefPubMedGoogle Scholar
  7. 7.
    Macha MA, Matta A, Kaur J, Chauhan SS, Thakar A, Shukla NK, Gupta SD, Ralhan R (2011) Prognostic significance of nuclear pSTAT3 in oral cancer. Head Neck 33(4):482–489CrossRefPubMedGoogle Scholar
  8. 8.
    Rane SG, Reddy EP (2000) Janus kinases: components of multiple signaling pathways. Oncogene 19(49):5662–5679. CrossRefPubMedGoogle Scholar
  9. 9.
    Sen M, Joyce S, Panahandeh M, Li C, Thomas SM, Maxwell J, Wang L, Gooding WE, Johnson DE, Grandis JR (2012) Targeting Stat3 abrogates EGFR inhibitor resistance in cancer. Clin Cancer Res 18(18):4986–4996. CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Xiong A, Yang Z, Shen Y, Zhou J, Shen Q (2014) Transcription factor STAT3 as a novel molecular target for Cancer prevention. Cancers (Basel) 6(2):926–957. CrossRefGoogle Scholar
  11. 11.
    Shah NG, Trivedi TI, Tankshali RA, Goswami JV, Jetly DH, Shukla SN, Shah PM, Verma RJ (2009) Prognostic significance of molecular markers in oral squamous cell carcinoma: a multivariate analysis. Head Neck 31(12):1544–1556. CrossRefPubMedGoogle Scholar
  12. 12.
    Trivedi TI, Tankshali RA, Goswami JV, Shukla SN, Shah PM, Shah NG (2011) Identification of site-specific prognostic biomarkers in patients with oral squamous cell carcinoma. Neoplasma 58(3):217–226CrossRefPubMedGoogle Scholar
  13. 13.
    Bromberg J (2002) Stat proteins and oncogenesis. J Clin Invest 109(9):1139–1142. CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Jewett A, Head C, Cacalano NA (2006) Emerging mechanisms of immunosuppression in oral cancers. J Dent Res 85:1061–1073CrossRefPubMedGoogle Scholar
  15. 15.
    Lai SY, Johnson FM (2010) Defining the role of the JAK-STAT pathway in head and neck and thoracic malignancies: implications for future therapeutic approaches. Drug Resist Updat 13(3):67–78. CrossRefPubMedGoogle Scholar
  16. 16.
    Naher L, Kiyoshima T, Kobayashi I, Wada H, Nagata K, Fujiwara H, Ookuma YF, Ozeki S, Nakamura S, Sakai H (2012) STAT3 signal transduction through interleukin-22 in oral squamous cell carcinoma. Int J Oncol 41:1577–1586CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Johnson GL, Lapadat R (2002) Mitogen-activated protein kinase pathways mediated by ERK, JNK, and p38 protein kinases. Science 298(5600):1911–1912. CrossRefPubMedGoogle Scholar
  18. 18.
    Aguzzi A, Maggioni D, Nicolini G, Tredici G, Gaini RM, Garavello W (2009) MAP kinase modulation in squamous cell carcinoma of the oral cavity. Anticancer Res 29(1):303–308PubMedGoogle Scholar
  19. 19.
    Dhillon AS, Hagan S, Rath O, Kolch W (2007) MAP kinase signalling pathways in cancer. Oncogene 26(22):3279–3290. CrossRefPubMedGoogle Scholar
  20. 20.
    Kim JY, An JM, Chung WY, Park KK, Hwang JK, Kim d S, Seo SR, Seo JT (2013) Xanthorrhizol induces apoptosis through ROS-mediated MAPK activation in human oral squamous cell carcinoma cells and inhibits DMBA-induced oral carcinogenesis in hamsters. Phytother Res 27(4):493–498. CrossRefPubMedGoogle Scholar
  21. 21.
    Li B, Lu L, Zhong M, Tan XX, Liu CY, Guo Y, Yi X (2013) Terbinafine inhibits KSR1 and suppresses Raf-MEK-ERK signaling in oral squamous cell carcinoma cells. Neoplasma 60(4):406–412. CrossRefPubMedGoogle Scholar
  22. 22.
    Maggioni D, Gaini R, Nicolini G, Tredici G, Garavello W (2011) MAPKs activation in head and neck squamous cell carcinomas. Oncol Rev 5:223–231Google Scholar
  23. 23.
    Doganer F, Turgut Cosan D, Gunes HV, Degirmenci I, Bal C (2014) The effects of p38 gene silencing on breast cancer cells. Mol Biol Rep 41(5):2923–2927. CrossRefPubMedGoogle Scholar
  24. 24.
    Junttila MR, Ala-Aho R, Jokilehto T, Peltonen J, Kallajoki M, Grenman R, Jaakkola P, Westermarck J, Kahari VM (2007) p38alpha and p38delta mitogen-activated protein kinase isoforms regulate invasion and growth of head and neck squamous carcinoma cells. Oncogene 26(36):5267–5279. CrossRefPubMedGoogle Scholar
  25. 25.
    Leelahavanichkul K, Amornphimoltham P, Molinolo AA, Basile JR, Koontongkaew S, Gutkind JS (2014) A role for p38 MAPK in head and neck cancer cell growth and tumor-induced angiogenesis and lymphangiogenesis. Mol Oncol 8(1):105–118. CrossRefPubMedGoogle Scholar
  26. 26.
    Riebe C, Pries R, Kemkers A, Wollenberg B (2007) Increased cytokine secretion in head and neck cancer upon p38 mitogen-activated protein kinase activation. Int J Mol Med 20(6):883–887PubMedGoogle Scholar
  27. 27.
    Yen CY, Liang SS, Han LY, Chou HL, Chou CK, Lin SR, Chiu CC (2013) Cardiotoxin III inhibits proliferation and migration of oral cancer cells through MAPK and MMP signaling. ScientificWorldJournal 2013:650946. PubMedPubMedCentralGoogle Scholar
  28. 28.
    Koul HK, Pal M, Koul S (2013) Role of p38 MAP kinase signal transduction in solid tumors. Genes Cancer 4(9–10):342–359. CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Gkouveris I, Nikitakis N, Karanikou M, Rassidakis G, Sklavounou A (2014) Erk1/2 activation and modulation of STAT3 signaling in oral cancer. Oncol Rep 32(5):2175–2182. CrossRefPubMedGoogle Scholar
  30. 30.
    Ahmed ST, Mayer A, Ji JD, Ivashkiv LB (2002) Inhibition of IL-6 signaling by a p38-dependent pathway occurs in the absence of new protein synthesis. J Leukoc Biol 72(1):154–162PubMedGoogle Scholar
  31. 31.
    Tkach M, Rosemblit C, Rivas MA, Proietti CJ, Diaz Flaque MC, Mercogliano MF, Beguelin W, Maronna E, Guzman P, Gercovich FG, Deza EG, Elizalde PV, Schillaci R (2013) p42/p44 MAPK-mediated Stat3Ser727 phosphorylation is required for progestin-induced full activation of Stat3 and breast cancer growth. Endocr Relat Cancer 20(2):197–212. CrossRefPubMedGoogle Scholar
  32. 32.
    Xue P, Zhao Y, Liu Y, Yuan Q, Xiong C, Ruan J (2014) A novel compound RY10-4 induces apoptosis and inhibits invasion via inhibiting STAT3 through ERK-, p38-dependent pathways in human lung adenocarcinoma A549 cells. Chem Biol Interact 209:25–34. CrossRefPubMedGoogle Scholar
  33. 33.
    Park JI, Lee MG, Cho K, Park BJ, Chae KS, Byun DS, Ryu BK, Park YK, Chi SG (2003) Transforming growth factor-beta1 activates interleukin-6 expression in prostate cancer cells through the synergistic collaboration of the Smad2, p38-NF-kappaB, JNK, and Ras signaling pathways. Oncogene 22(28):4314–4332. CrossRefPubMedGoogle Scholar
  34. 34.
    Khandrika L, Lieberman R, Koul S, Kumar B, Maroni P, Chandhoke R, Meacham RB, Koul HK (2009) Hypoxia-associated p38 mitogen-activated protein kinase-mediated androgen receptor activation and increased HIF-1alpha levels contribute to emergence of an aggressive phenotype in prostate cancer. Oncogene 28(9):1248–1260. CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Maroni PD, Koul S, Meacham RB, Koul HK (2004) Mitogen activated protein kinase signal transduction pathways in the prostate. Cell Commun Signal 2(1):5. CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Suarez-Cuervo C, Merrell MA, Watson L, Harris KW, Rosenthal EL, Vaananen HK, Selander KS (2004) Breast cancer cells with inhibition of p38alpha have decreased MMP-9 activity and exhibit decreased bone metastasis in mice. Clin Exp Metastasis 21(6):525–533CrossRefPubMedGoogle Scholar
  37. 37.
    Kumar B, Sinclair J, Khandrika L, Koul S, Wilson S, Koul HK (2009) Differential effects of MAPKs signaling on the growth of invasive bladder cancer cells. Int J Oncol 34(6):1557–1564PubMedGoogle Scholar
  38. 38.
    Kumar B, Koul S, Petersen J, Khandrika L, Hwa JS, Meacham RB, Wilson S, Koul HK (2010) p38 mitogen-activated protein kinase-driven MAPKAPK2 regulates invasion of bladder cancer by modulation of MMP-2 and MMP-9 activity. Cancer Res 70(2):832–841. CrossRefPubMedGoogle Scholar
  39. 39.
    Huang Q, Lan F, Wang X, Yu Y, Ouyang X, Zheng F, Han J, Lin Y, Xie Y, Xie F, Liu W, Yang X, Wang H, Dong L, Wang L, Tan J (2014) IL-1beta-induced activation of p38 promotes metastasis in gastric adenocarcinoma via upregulation of AP-1/c-fos, MMP2 and MMP9. Mol Cancer 13:18. CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Cui XP, Qin CK, Zhang ZH, Su ZX, Liu X, Wang SK, Tian XS (2014) HOXA10 promotes cell invasion and MMP-3 expression via TGFbeta2-mediated activation of the p38 MAPK pathway in pancreatic cancer cells. Dig Dis Sci 59(7):1442–1451. CrossRefPubMedGoogle Scholar
  41. 41.
    Cheng TL, Symons M, Jou TS (2004) Regulation of anoikis by Cdc42 and Rac1. Exp Cell Res 295(2):497–511. CrossRefPubMedGoogle Scholar
  42. 42.
    Avisetti DR, Babu KS, Kalivendi SV (2014) Activation of p38/JNK pathway is responsible for embelin induced apoptosis in lung cancer cells: transitional role of reactive oxygen species. PLoS One 9(1):e87050. CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Bulavin DV, Fornace AJ Jr (2004) p38 MAP kinase's emerging role as a tumor suppressor. Adv Cancer Res 92:95–118. CrossRefPubMedGoogle Scholar
  44. 44.
    Vega GG, Aviles-Salas A, Chalapud JR, Martinez-Paniagua M, Pelayo R, Mayani H, Hernandez-Pando R, Martinez-Maza O, Huerta-Yepez S, Bonavida B, Vega MI (2015) P38 MAPK expression and activation predicts failure of response to CHOP in patients with diffuse large B-cell lymphoma. BMC Cancer 15:722. CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Martinez-Useros J, Georgiev-Hristov T, Borrero-Palacios A, Fernandez-Acenero MJ, Rodriguez-Remirez M, del Puerto-Nevado L, Cebrian A, Gomez del Pulgar MT, Cazorla A, Vega-Bravo R, Perez N, Celdran A, Garcia-Foncillas J (2015) Identification of poor-outcome Biliopancreatic carcinoma patients with two-marker signature based on ATF6alpha and p-p38 "STARD compliant". Medicine (Baltimore) 94(45):e1972. CrossRefGoogle Scholar
  46. 46.
    Li C, Johnson DE (2012) Bortezomib induces autophagy in head and neck squamous cell carcinoma cells via JNK activation. Cancer Lett 314(1):102–107. CrossRefPubMedGoogle Scholar
  47. 47.
    Hour MJ, Lee KT, Wu YC, Wu CY, You BJ, Chen TL, Lee HZ (2013) A novel antitubulin agent, DPQZ, induces cell apoptosis in human oral cancer cells through Ras/Raf inhibition and MAP kinases activation. Arch Toxicol 87(5):835–846. CrossRefPubMedGoogle Scholar
  48. 48.
    Zhang S, Wang XL, Gan YH, Li SL (2010) Activation of c-Jun N-terminal kinase is required for mevastatin-induced apoptosis of salivary adenoid cystic carcinoma cells. Anti-Cancer Drugs 21(7):678–686PubMedGoogle Scholar
  49. 49.
    Shen F, Fan X, Liu B, Jia X, Gao A, Du H, Ye M, You B, Huang C, Shi X (2008) Downregulation of cyclin D1-CDK4 protein in human embryonic lung fibroblasts (HELF) induced by silica is mediated through the ERK and JNK pathway. Cell Biol Int 32(10):1284–1292. CrossRefPubMedGoogle Scholar
  50. 50.
    Stegeman H, Kaanders JH, Verheijen MM, Peeters WJ, Wheeler DL, Iida M, Grenman R, van der Kogel AJ, Span PN, Bussink J (2013) Combining radiotherapy with MEK1/2, STAT5 or STAT6 inhibition reduces survival of head and neck cancer lines. Mol Cancer 12(1):133. CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Fletcher EV, Love-Homan L, Sobhakumari A, Feddersen CR, Koch AT, Goel A, Simons AL (2013) EGFR inhibition induces proinflammatory cytokines via NOX4 in HNSCC. Mol Cancer Res 11(12):1574–1584. CrossRefPubMedGoogle Scholar
  52. 52.
    Duffey D, Dolgilevich S, Razzouk S, Li L, Green R, Gorti GK (2011) Activating transcription factor-2 in survival mechanisms in head and neck carcinoma cells. Head Neck 33(11):1586–1599. CrossRefPubMedGoogle Scholar
  53. 53.
    Kim JE, Lee JI, Jin DH, Lee WJ, Park GB, Kim S, Kim YS, Wu TC, Hur DY, Kim D (2014) Sequential treatment of HPV E6 and E7-expressing TC-1 cells with bortezomib and celecoxib promotes apoptosis through p-p38 MAPK-mediated downregulation of cyclin D1 and CDK2. Oncol Rep 31(5):2429–2437. CrossRefPubMedGoogle Scholar
  54. 54.
    Park SW, Kim HS, Hah JW, Jeong WJ, Kim KH, Sung MW (2010) Celecoxib inhibits cell proliferation through the activation of ERK and p38 MAPK in head and neck squamous cell carcinoma cell lines. Anti-Cancer Drugs 21(9):823–830. CrossRefPubMedGoogle Scholar
  55. 55.
    Lin Y, Mallen-St Clair J, Wang G, Luo J, Palma-Diaz F, Lai C, Elashoff DA, Sharma S, Dubinett SM, St John M (2016) p38 MAPK mediates epithelial-mesenchymal transition by regulating p38IP and Snail in head and neck squamous cell carcinoma. Oral Oncol 60:81–89. CrossRefPubMedGoogle Scholar
  56. 56.
    Deraz EM, Kudo Y, Yoshida M, Obayashi M, Tsunematsu T, Tani H, Siriwardena SB, Keikhaee MR, Qi G, Iizuka S, Ogawa I, Campisi G, Lo Muzio L, Abiko Y, Kikuchi A, Takata T (2011) MMP-10/stromelysin-2 promotes invasion of head and neck cancer. PLoS One 6(10):e25438CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Chang CM, Chang PY, Tu MG, Lu CC, Kuo SC, Amagaya S, Lee CY, Jao HY, Chen MY, Yang JS (2012) Epigallocatechin gallate sensitizes CAL-27 human oral squamous cell carcinoma cells to the anti-metastatic effects of gefitinib (Iressa) via synergistic suppression of epidermal growth factor receptor and matrix metalloproteinase-2. Oncol Rep 28(5):1799–1807. CrossRefPubMedGoogle Scholar
  58. 58.
    Schuettler D, Piontek G, Wirth M, Haller B, Reiter R, Brockhoff G, Pickhard A (2015) Selective inhibition of EGFR downstream signaling reverses the irradiation-enhanced migration of HNSCC cells. Am J Cancer Res 5(9):2660–2672PubMedPubMedCentralGoogle Scholar
  59. 59.
    Platanias LC (2003) The p38 mitogen-activated protein kinase pathway and its role in interferon signaling. Pharmacol Ther 98(2):129–142CrossRefPubMedGoogle Scholar
  60. 60.
    Tanabe K, Kozawa O, Iida H (2016) cAMP/PKA enhances interleukin-1beta-induced interleukin-6 synthesis through STAT3 in glial cells. Cell Signal 28(1):19–24. CrossRefPubMedGoogle Scholar
  61. 61.
    Riebe C, Pries R, Schroeder KN, Wollenberg B (2011) Phosphorylation of STAT3 in head and neck cancer requires p38 MAPKinase, whereas phosphorylation of STAT1 occurs via a different signaling pathway. Anticancer Res 31(11):3819–3825PubMedGoogle Scholar
  62. 62.
    Enslen H, Raingeaud J, Davis RJ (1998) Selective activation of p38 mitogen-activated protein (MAP) kinase isoforms by the MAP kinase kinases MKK3 and MKK6. J Biol Chem 273(3):1741–1748CrossRefPubMedGoogle Scholar
  63. 63.
    Hu MC, Wang YP, Mikhail A, Qiu WR, Tan TH (1999) Murine p38-delta mitogen-activated protein kinase, a developmentally regulated protein kinase that is activated by stress and proinflammatory cytokines. J Biol Chem 274(11):7095–7102CrossRefPubMedGoogle Scholar

Copyright information

© Arányi Lajos Foundation 2018

Authors and Affiliations

  1. 1.Department of Oral Pathology and MedicineDental School, National and Kapodistrian University of AthensAthensGreece

Personalised recommendations