Pathology & Oncology Research

, Volume 25, Issue 2, pp 513–520 | Cite as

Erlotinib for Patients with EGFR Wild-Type Metastatic NSCLC: a Retrospective Biomarkers Analysis

  • Alessandro InnoEmail author
  • Vincenzo Di Noia
  • Maurizio Martini
  • Ettore D’Argento
  • Mariantonietta Di Salvatore
  • Vincenzo Arena
  • Giovanni Schinzari
  • Armando Orlandi
  • Luigi Maria Larocca
  • Alessandra Cassano
  • Carlo Barone
Original Article


Erlotinib is approved for the treatment of patients with EGFR mutation positive, metastatic NSCLC. It is also approved as second/third line therapy for EGFR mutation negative patients, but in this setting the benefit of erlotinib is modest and there is no validated biomarker for selecting EGFR wild-type patients who may benefit the most from the treatment. We retrospectively assessed EGFR and K-RAS mutational status, and EGFR, c-MET and IGF1-R expression in tumor samples of 72 patients with metastatic NSCLC treated with erlotinib after at least one prior line of chemotherapy, from 2008 to 2012. We analyzed the association between biomarkers and outcome (RR, PFS, and OS). EGFR mutated patients achieved a better RR (56% vs 8%, p = .002), PFS (10 vs 3 months, HR 0.53, p = 0.48) and OS (20 vs 6 months, HR 0.55, p = .07), compared to EGFR wild-type patients. Among 63 EGFR wild-type patients, those with EGFR high-expression had a better outcome in terms of RR (40% vs 2%, p = .002), PFS (7.5 vs 2 months, HR 0.45, p = .007) and OS (30 vs 5 months, HR 0.34, p < .001) compared to patients with EGFR intermediate or low/negative-expression. IGF1-R expression, c-MET expression and K-RAS mutational status did not significantly affect the outcome; however, no patients with K-RAS mutation or c-MET high-expression achieved an objective response. In patients with metastatic, chemo-refractory EGFR wild-type NSCLC, EGFR high-expression may represent a positive predictor of activity for erlotinib, whereas K-RAS mutation and c-MET high-expression may predict lack of activity. These findings deserve further prospective evaluation.


EGFR wild-type NSCLC Erlotinib K-RAS mutation IGF1-R expression C-MET expression 


Compliance with Ethical Standards

Ethical Approval

All procedures performed in this study involving human participants were in accordance with the ethical standards of the institutional research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed Consent

For this type of study formal consent is not required.

Conflict of Interest

All authors declare that they do not have any conflict of interest.


  1. 1.
    Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D (2011) Global cancer statistics. CA Cancer J Clin 61:69–90. CrossRefGoogle Scholar
  2. 2.
    Minuti G, D'Incecco A, Cappuzzo F (2013) Targeted therapy for NSCLC with driver mutations. Expert Opin Biol Ther 13:1401–1412. CrossRefGoogle Scholar
  3. 3.
    Reck M, Rodríguez-Abreu D, Robinson AG, Hui R, Csőszi T, Fülöp A et al (2016) Pembrolizumab versus chemotherapy for PD-L1-positive non-small-cell lung Cancer. N Engl J Med 375:1823–1833. CrossRefGoogle Scholar
  4. 4.
    Brahmer J, Reckamp KL, Baas P, Crinò L, Eberhardt WE, Poddubskaya E et al (2015) Nivolumab versus docetaxel in advanced squamous-cell non-small-cell lung Cancer. N Engl J Med 373:123–135. CrossRefGoogle Scholar
  5. 5.
    Borghaei H, Paz-Ares L, Horn L, Spigel DR, Steins M, Ready NE et al (2015) Nivolumab versus docetaxel in advanced Nonsquamous non-small-cell lung Cancer. N Engl J Med 373:1627–1639. CrossRefGoogle Scholar
  6. 6.
    Garon EB, Rizvi NA, Hui R, Leighl N, Balmanoukian AS, Eder JP et al (2015) Pembrolizumab for the treatment of non-small-cell lung cancer. N Engl J Med 372:2018–2028. CrossRefGoogle Scholar
  7. 7.
    Vallee A, Sagan C, Le Loupp AG, Bach K, Dejoie T, Denis MG (2013) Detection of EGFR gene mutations in non-small cell lung cancer: lessons from a single-institution routine analysis of 1,403 tumor samples. Int J Oncol 43:1045–1051. CrossRefGoogle Scholar
  8. 8.
    Maemondo M, Inoue A, Kobayashi K, Sugawara S, Oizumi S, Isobe H et al (2010) Gefitinib or chemotherapy for non-small-cell lung cancer with mutated EGFR. N Engl J Med 362:2380–2388. CrossRefGoogle Scholar
  9. 9.
    Rosell R, Carcereny E, Gervais R, Vergnenegre A, Massuti B, Felip E et al (2012) Erlotinib versus standard chemotherapy as first-line treatment for European patients with advanced EGFR mutation-positive non-small-cell lung cancer (EURTAC): a multicentre, open-label, randomised phase 3 trial. Lancet Oncol 13:239–246. CrossRefGoogle Scholar
  10. 10.
    Sequist LV, Yang JC, Yamamoto N, O'Byrne K, Hirsh V, Mok T et al (2013) Phase III study of Afatinib or cisplatin plus Pemetrexed in patients with metastatic lung adenocarcinoma with EGFR mutations. J Clin Oncol 31:3327–3334. CrossRefGoogle Scholar
  11. 11.
    Shepherd FA, Rodrigues Pereira J, Ciuleanu T, Tan EH, Hirsh V, Thongprasert S et al (2005) Erlotinib in previously treated non-small-cell lung cancer. N Engl J Med 353:123–132. CrossRefGoogle Scholar
  12. 12.
    Reck M, van Zandwijk N, Gridelli C, Baliko Z, Rischin D, Allan S et al (2010) Erlotinib in advanced non-small cell lung cancer: efficacy and safety findings of the global phase IV Tarceva lung Cancer survival treatment study. J Thorac Oncol 5:1616–1622CrossRefGoogle Scholar
  13. 13.
    Rossi S, D'Argento E, Basso M, Strippoli A, Dadduzio V, Cerchiaro E et al (2015) Different EGFR gene mutations in exon 18, 19 and 21 as prognostic and predictive markers in NSCLC: a single institution analysis. Mol Diagn Ther 20:55–63. CrossRefGoogle Scholar
  14. 14.
    Natalicchio MI, Improta G, Zupa A, Cursio OE, Stampone E, Possidente L et al (2014) Pyrosequencing evaluation of low-frequency KRAS mutant alleles for EGF receptor therapy selection in metastatic colorectal carcinoma. Future Oncol 10:713–723. CrossRefGoogle Scholar
  15. 15.
    Inno A, Di Salvatore M, Cenci T, Martini M, Orlandi A, Strippoli A et al (2011) Is there a role for IGF1R and c-MET pathways in resistance to cetuximab in metastatic colorectal cancer? Clin Colorectal Cancer 10:325–332. CrossRefGoogle Scholar
  16. 16.
    Gaber R, Watermann I, Kugler C, Reinmuth N, Huber RM, Schnabel PA et al (2014) Correlation of EGFR expression, gene copy number and clinicopathological status in NSCLC. Diagn Pathol 0:165. CrossRefGoogle Scholar
  17. 17.
    Hirsch FR, Varella-Garcia M, Bunn PA Jr, Di Maria MV, Veve R, Bremmes RM et al (2003) Epidermal growth factor receptor in non-small-cell lung carcinomas: correlation between gene copy number and protein expression and impact on prognosis. J Clin Oncol 21:3798–3807. CrossRefGoogle Scholar
  18. 18.
    Coudert B, Ciuleanu T, Park K, Wu YL, Giaccone G, Brugger W et al (2012) Survival benefit with erlotinib maintenance therapy in patients with advanced non-small-cell lung cancer (NSCLC) according to response to first-line chemotherapy. Ann Oncol 23:388–394. CrossRefGoogle Scholar
  19. 19.
    Garassino MC, Martelli O, Broggini M, Farina G, Veronese S, Rulli E et al (2013) Erlotinib versus docetaxel as second-line treatment of patients with advanced non-small-cell lung cancer and wild-type EGFR tumours (TAILOR): a randomised controlled trial. Lancet Oncol. 14:981–988. CrossRefGoogle Scholar
  20. 20.
    Laurie SA, Goss GD (2013) Role of epidermal growth factor receptor inhibitors in epidermal growth factor receptor wild-type non-small-cell lung cancer. J Clin Oncol 31:1061–1069. CrossRefGoogle Scholar
  21. 21.
    Zer A, Leighl NB (2014) Second-line therapy in non-small-cell lung cancer: the DELTA between different genotypes widens. J Clin Oncol 32:1874–1881Google Scholar
  22. 22.
    Hirsch FR, Varella-Garcia M, Bunn PA Jr, Franklin WA, Dziadziuszko R, Thatcher N et al (2006) Molecular predictors of outcome with gefitinib in a phase III placebo-controlled study in advanced non-small-cell lung cancer. J Clin Oncol 24:5034–5042CrossRefGoogle Scholar
  23. 23.
    Parra HS, Cavina R, Latteri F, Zucali PA, Campagnoli E, Morenghi E et al (2004) Analysis of epidermal growth factor receptor expression as a predictive factor for response to gefitinib ('Iressa', ZD1839) in non-small-cell lung cancer. Br J Cancer 91:208–212. CrossRefGoogle Scholar
  24. 24.
    Clark GM, Zborowski DM, Culbertson JL, Whitehead M, Savoie M, Seymour L et al (2006) Clinical utility of epidermal growth factor receptor expression for selecting patients with advanced non-small cell lung cancer for treatment with erlotinib. J Thorac Oncol 1:837–846CrossRefGoogle Scholar
  25. 25.
    Lohinai Z, Klikovits T, Moldvay J, Ostoros G, Raso E, Timar J et al (2017) KRAS-mutation incidence and prognostic value are metastatic site-specific in lung adenocarcinoma: poor prognosis in patients with KRAS mutation and bone metastasis. Sci Rep 7:39721. CrossRefGoogle Scholar
  26. 26.
    Cserepes M, Ostoros G, Lohinai Z, Raso E, Barbai T, Timar J et al (2014) Subtype-specific KRAS mutations in advanced lung adenocarcinoma: a retrospective study of patients treated with platinum-based chemotherapy. Eur J Cancer 50:1819–1828. CrossRefGoogle Scholar
  27. 27.
    Califano R, Landi L, Cappuzzo F (2012) Prognostic and predictive value of K-RAS mutations in non-small cell lung cancer. Drugs 72(Suppl 1):28–36. CrossRefGoogle Scholar
  28. 28.
    Rulli E, Marabese M, Torri V, Farina G, Veronese S, Bettini A et al (2015) Value of KRAS as prognostic or predictive marker in NSCLC: results from the TAILOR trial. Ann Oncol 26:2079–2084. CrossRefGoogle Scholar
  29. 29.
    Zhu CQ, da Cunha Santos G, Ding K, Sakurada A, Cutz JC, Liu N et al (2008) Role of KRAS and EGFR as biomarkers of response to erlotinib in National Cancer Institute of Canada clinical trials group study BR.21. J Clin Oncol 26:4268–4275. CrossRefGoogle Scholar
  30. 30.
    Del Re M, Tiseo M, Bordi P, D'Incecco A, Camerini A, Petrini I et al (2017) Contribution of KRAS mutations and c.2369C > T (p.T790M) EGFR to acquired resistance to EGFR-TKIs in EGFR mutant NSCLC: a study on circulating tumor DNA. Oncotarget 8:13611–13619. Google Scholar
  31. 31.
    Dziadziuszko R, Wynes MW, Singh S, Asuncion BR, Ranger-Moore J, Konopa K et al (2012) Correlation between MET gene copy number by silver in situ hybridization and protein expression by immunohistochemistry in non-small cell lung cancer. J Thorac Oncol 7:340–347. CrossRefGoogle Scholar
  32. 32.
    Passiglia F, Van Der Steen N, Raez L, Pauwels P, Gil-Bazo I, Santos E et al (2014) The role of cMet in non-small cell lung cancer resistant to EGFR-inhibitors: did we really find the target? Curr Drug Targets 15:1284–1292CrossRefGoogle Scholar
  33. 33.
    Schildhaus HU, Schultheis AM, Rüschoff J, Binot E, Merkelbach-Bruse S, Fassunke J et al (2015) MET amplification status in therapy-naïve adeno- and squamous cell carcinomas of the lung. Clin Cancer Res 21:907–915. CrossRefGoogle Scholar
  34. 34.
    Meert AP, Martin B, Verdebout JM, Noël S, Ninane V, Sculier JP (2005) Is there a relationship between c-erbB-1 and c-erbB-2 amplification and protein overexpression in NSCLC? Lung Cancer 47:325–336CrossRefGoogle Scholar

Copyright information

© Arányi Lajos Foundation 2018

Authors and Affiliations

  • Alessandro Inno
    • 1
    Email author
  • Vincenzo Di Noia
    • 2
  • Maurizio Martini
    • 3
  • Ettore D’Argento
    • 2
  • Mariantonietta Di Salvatore
    • 2
  • Vincenzo Arena
    • 3
  • Giovanni Schinzari
    • 2
  • Armando Orlandi
    • 2
  • Luigi Maria Larocca
    • 3
  • Alessandra Cassano
    • 2
  • Carlo Barone
    • 2
  1. 1.Medical Oncology Unit, Cancer Care CenterOspedale Sacro Cuore Don CalabriaVeronaItaly
  2. 2.Department of Medical OncologyUniversità Cattolica del Sacro CuoreRomeItaly
  3. 3.Department of PathologyUniversità Cattolica del Sacro CuoreRomeItaly

Personalised recommendations