Skip to main content
Log in

Protein Expression Analysis in Uterine Cervical Cancer for Potential Targets in Treatment

  • Original Article
  • Published:
Pathology & Oncology Research

Abstract

Specific markers in lesions of the human uterine cervix cancer (UCC) are still needed for prognostic, diagnostic and/or therapeutic purposes. In this study we evaluated key molecules at protein level between normal epithelium, cervical intraepithelial neoplasia (CIN1–3) and invasive cancer of a group of molecules previously reported at mRNA level. For that purpose, human formalin-fixed paraffin embedded tissue microarrays (TMAs) were constructed containing 205 Mexican tissue core specimens. Immunohistochemistry and quantitative analysis of histological staining was performed against twenty-two distinct proteins for each core and the processing platform ImageJ. In the progression of the disease we found key statistical differences for the proteins SEL1, Notch3 and SOCS3. High expressions of SEL1L, Notch3 and SOCS3 have potential value to increase the prognostic of UCC in combination with markers such as p16INK4a. This study identified key drivers in cervical carcinogenesis that should be evaluated for the development of UCC therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Walboomers JM, Jacobs MV, Manos MM, Bosch FX, Kummer JA, Shah KV, Snijders PJ, Peto J, Meijer CJ, Munoz N (1999) Human papillomavirus is a necessary cause of invasive cervical cancer worldwide. J Pathol 189(1):12–19. https://doi.org/10.1002/(SICI)1096-9896(199909)189:1<12::AID-PATH431>3.0.CO;2-F

    Article  CAS  Google Scholar 

  2. Malinowski DP (2007) Multiple biomarkers in molecular oncology. I. Molecular diagnostics applications in cervical cancer detection. Expert Rev Mol Diagn 7(2):117–131. https://doi.org/10.1586/14737159.7.2.117

    Article  CAS  PubMed  Google Scholar 

  3. Brown CA, Bogers J, Sahebali S, Depuydt CE, De Prins F, Malinowski DP (2012) Role of protein biomarkers in the detection of high-grade disease in cervical cancer screening programs. J Oncol 2012:289315–289311. https://doi.org/10.1155/2012/289315

    Article  PubMed  PubMed Central  Google Scholar 

  4. Santos L, Leon-Galvan MF, Marino-Marmolejo EN, Barba de la Rosa AP, De Leon RA, Gonzalez-Amaro R, Guevara-Gonzalez RG (2011) Identification of differential expressed transcripts in cervical cancer of Mexican patients. Tumour Biol: J Int Soc Oncodev Biol Med 32(3):561–568. https://doi.org/10.1007/s13277-010-0151-4

    Article  CAS  Google Scholar 

  5. Palermo R, Checquolo S, Bellavia D, Talora C, Screpanti I (2014) The molecular basis of notch signaling regulation: a complex simplicity. Curr Mol Med 14(1):34–44

    Article  CAS  PubMed  Google Scholar 

  6. Allenspach EJ, Maillard I, Aster JC, Pear WS (2002) Notch signaling in cancer. Cancer Biol Ther 1(5):466–476

    Article  PubMed  Google Scholar 

  7. Arafa M, Boniver J, Delvenne P (2010) Progression model tissue microarray (TMA) for the study of uterine carcinomas. Dis Markers 28(5):267–272. https://doi.org/10.3233/DMA-2010-0709

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Zhu H, Zhou X, Redfield S, Lewin J, Miele L (2013) Elevated Jagged-1 and Notch-1 expression in high grade and metastatic prostate cancers. Am J Transl Res 5(3):368–378

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Cornish TC, Halushka MK (2009) Color deconvolution for the analysis of tissue microarrays. Anal Quant Cytol Histol/ Int Acad Cytol Am Soc Cytol 31(5):304–312

    Google Scholar 

  10. Shapiro SS, Wilk MB (1965) An analysis of variance test for normality (complete samples). Biometrika 52:591-&. https://doi.org/10.2307/2333709

  11. Keyes TK, Levy MS (1997) Analysis of Levene's test under design imbalance. J Educ Behav Stat 22(2):227–236

    Google Scholar 

  12. Box GEP, Cox DR (1964) An analysis of transformations. J Roy Stat Soc B 26(2):211–252

    Google Scholar 

  13. Cicchett Dv, Collins D, Latvis V (1972) Program for Comparing Group Means - One-Way Anova and Tukey Multiple-Range Tests. Behav Sci 17 (4):399-&

  14. Keselman HJ, Murray R (1974) Tukey tests for pair-wise contrasts following analysis of variance - is there a type 4 error. Psychol Bull 81(9):608–609. https://doi.org/10.1037/h0036938

    Article  Google Scholar 

  15. Li JJ (2011) A simple and flexible holm gatekeeping procedure. Biom J 53(5):797–809. https://doi.org/10.1002/bimj.201000040

    Article  PubMed  Google Scholar 

  16. Ikenberg H, Bergeron C, Schmidt D, Griesser H, Alameda F, Angeloni C, Bogers J, Dachez R, Denton K, Hariri J, Keller T, von Knebel Doeberitz M, Neumann HH, Puig-Tintore LM, Sideri M, Rehm S, Ridder R, Group PS (2013) Screening for cervical cancer precursors with p16/Ki-67 dual-stained cytology: results of the PALMS study. J Natl Cancer Inst 105(20):1550–1557. https://doi.org/10.1093/jnci/djt235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wentzensen N, Fetterman B, Castle PE, Schiffman M, Wood SN, Stiemerling E, Tokugawa D, Bodelon C, Poitras N, Lorey T, Kinney W (2015) p16/Ki-67 dual stain cytology for detection of cervical Precancer in HPV-positive women. J Natl Cancer Inst 107(12):djv257. https://doi.org/10.1093/jnci/djv257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Garner DM (2016) RE: p16/Ki-67 dual stain cytology for detection of cervical Precancer in HPV-positive women. J Natl Cancer Inst 108(2):djv389. https://doi.org/10.1093/jnci/djv389

    Article  PubMed  Google Scholar 

  19. Benczik M, Galamb A, Koiss R, Kovacs A, Jaray B, Szekely T, Szekerczes T, Schaff Z, Sobel G, Jeney C (2016) Claudin-1 as a biomarker of cervical cytology and histology. Pathol Oncol Res 22(1):179–188. https://doi.org/10.1007/s12253-015-9990-z

    Article  CAS  PubMed  Google Scholar 

  20. Klaes R, Friedrich T, Spitkovsky D, Ridder R, Rudy W, Petry U, Dallenbach-Hellweg G, Schmidt D, von Knebel Doeberitz M (2001) Overexpression of p16(INK4A) as a specific marker for dysplastic and neoplastic epithelial cells of the cervix uteri. Int J Cancer 92(2):276–284

    Article  CAS  PubMed  Google Scholar 

  21. Volgareva G, Zavalishina L, Andreeva Y, Frank G, Krutikova E, Golovina D, Bliev A, Spitkovsky D, Ermilova V, Kisseljov F (2004) Protein p16 as a marker of dysplastic and neoplastic alterations in cervical epithelial cells. BMC Cancer 4(58). https://doi.org/10.1186/1471-2407-4-58

  22. Harada Y, Ozaki K, Suzuki M, Fujiwara T, Takahashi E, Nakamura Y, Tanigami A (1999) Complete cDNA sequence and genomic organization of a human pancreas-specific gene homologous to Caenorhabditis elegans sel-1. J Hum Genet 44(5):330–336. https://doi.org/10.1007/s100380050171

    Article  CAS  PubMed  Google Scholar 

  23. Li S, Francisco AB, Munroe RJ, Schimenti JC, Long Q (2010) SEL1L deficiency impairs growth and differentiation of pancreatic epithelial cells. BMC Dev Biol 10:19. https://doi.org/10.1186/1471-213X-10-19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Cattaneo M, Lotti LV, Martino S, Alessio M, Conti A, Bachi A, Mariani-Costantini R, Biunno I (2011) Secretion of novel SEL1L endogenous variants is promoted by ER stress/UPR via endosomes and shed vesicles in human cancer cells. PLoS One 6(2):e17206. https://doi.org/10.1371/journal.pone.0017206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ashktorab H, Green W, Finzi G, Sessa F, Nouraie M, Lee EL, Morgano A, Moschetta A, Cattaneo M, Mariani-Costantini R, Brim H, Biunno I (2012) SEL1L, an UPR response protein, a potential marker of colonic cell transformation. Dig Dis Sci 57(4):905–912. https://doi.org/10.1007/s10620-011-2026-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wang SS, Hsiao R, Limpar MM, Lomahan S, Tran TA, Maloney NJ, Ikegaki N, Tang XX (2014) Destabilization of MYC/MYCN by the mitochondrial inhibitors, metaiodobenzylguanidine, metformin and phenformin. Int J Mol Med 33(1):35–42. https://doi.org/10.3892/ijmm.2013.1545

    Article  CAS  PubMed  Google Scholar 

  27. Duffy DJ, Krstic A, Schwarzl T, Higgins DG, Kolch W (2014) GSK3 inhibitors regulate MYCN mRNA levels and reduce neuroblastoma cell viability through multiple mechanisms, including p53 and Wnt signaling. Mol Cancer Ther 13(2):454–467. https://doi.org/10.1158/1535-7163.MCT-13-0560-T

    Article  CAS  PubMed  Google Scholar 

  28. Kang JH, Rychahou PG, Ishola TA, Qiao J, Evers BM, Chung DH (2006) MYCN silencing induces differentiation and apoptosis in human neuroblastoma cells. Biochem Biophys Res Commun 351(1):192–197. https://doi.org/10.1016/j.bbrc.2006.10.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Cui H, Kong Y, Xu M, Zhang H (2013) Notch3 functions as a tumor suppressor by controlling cellular senescence. Cancer Res 73(11):3451–3459. https://doi.org/10.1158/0008-5472.CAN-12-3902

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Jaskula-Sztul R, Eide J, Tesfazghi S, Dammalapati A, Harrison AD, Yu XM, Scheinebeck C, Winston-McPherson G, Kupcho KR, Robers MB, Hundal AK, Tang W, Chen H (2015) Tumor-suppressor role of Notch3 in medullary thyroid carcinoma revealed by genetic and pharmacological induction. Mol Cancer Ther 14(2):499–512. https://doi.org/10.1158/1535-7163.MCT-14-0073

    Article  CAS  PubMed  Google Scholar 

  31. Pelullo M, Quaranta R, Talora C, Checquolo S, Cialfi S, Felli MP, te Kronnie G, Borga C, Besharat ZM, Palermo R, Di Marcotullio L, Capobianco AJ, Gulino A, Screpanti I, Bellavia D (2014) Notch3/Jagged1 circuitry reinforces notch signaling and sustains T-ALL. Neoplasia 16(12):1007–1017. https://doi.org/10.1016/j.neo.2014.10.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Jung JG, Stoeck A, Guan B, Wu RC, Zhu H, Blackshaw S, Shih Ie M, Wang TL (2014) Notch3 interactome analysis identified WWP2 as a negative regulator of Notch3 signaling in ovarian cancer. PLoS Genet 10(10):e1004751. https://doi.org/10.1371/journal.pgen.1004751

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Bianchi L, Canton C, Bini L, Orlandi R, Menard S, Armini A, Cattaneo M, Pallini V, Bernardi LR, Biunno I (2005) Protein profile changes in the human breast cancer cell line MCF-7 in response to SEL1L gene induction. Proteomics 5(9):2433–2442. https://doi.org/10.1002/pmic.200401283

    Article  CAS  PubMed  Google Scholar 

  34. Yeasmin S, Nakayama K, Rahman MT, Rahman M, Ishikawa M, Iida K, Otsuki Y, Kobayashi H, Nakayama S, Miyazaki K (2010) Expression of nuclear Notch3 in cervical squamous cell carcinomas and its association with adverse clinical outcomes. Gynecol Oncol 117(3):409–416. https://doi.org/10.1016/j.ygyno.2010.03.004

    Article  CAS  PubMed  Google Scholar 

  35. Tripathi R, Rath G, Jawanjal P, Sharma S, Singhal P, Bhambhani S, Hussain S, Bharadwaj M (2014) Clinical impact of de-regulated Notch-1 and Notch-3 in the development and progression of HPV-associated different histological subtypes of precancerous and cancerous lesions of human uterine cervix. PLoS One 9(6):e98642. https://doi.org/10.1371/journal.pone.0098642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Bellavia D, Campese AF, Alesse E, Vacca A, Felli MP, Balestri A, Stoppacciaro A, Tiveron C, Tatangelo L, Giovarelli M, Gaetano C, Ruco L, Hoffman ES, Hayday AC, Lendahl U, Frati L, Gulino A, Screpanti I (2000) Constitutive activation of NF-kappaB and T-cell leukemia/lymphoma in Notch3 transgenic mice. EMBO J 19(13):3337–3348. https://doi.org/10.1093/emboj/19.13.3337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Bellavia D, Campese AF, Checquolo S, Balestri A, Biondi A, Cazzaniga G, Lendahl U, Fehling HJ, Hayday AC, Frati L, von Boehmer H, Gulino A, Screpanti I (2002) Combined expression of pTalpha and Notch3 in T cell leukemia identifies the requirement of preTCR for leukemogenesis. Proc Natl Acad Sci U S A 99 (6):3788–3793. https://doi.org/10.1073/pnas.062050599

  38. Zhang Y, Jia L, Lee SJ, Wang MM (2007) Conserved signal peptide of Notch3 inhibits interaction with proteasome. Biochem Biophys Res Commun 355(1):245–251. https://doi.org/10.1016/j.bbrc.2007.01.151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Palermo R, Checquolo S, Giovenco A, Grazioli P, Kumar V, Campese AF, Giorgi A, Napolitano M, Canettieri G, Ferrara G, Schinina ME, Maroder M, Frati L, Gulino A, Vacca A, Screpanti I (2012) Acetylation controls Notch3 stability and function in T-cell leukemia. Oncogene 31(33):3807–3817. https://doi.org/10.1038/onc.2011.533

    Article  CAS  PubMed  Google Scholar 

  40. Sasi W, Sharma AK, Mokbel K (2014) The role of suppressors of cytokine signalling in human neoplasms. Mol Biol Int 2014(630797):1–24. https://doi.org/10.1155/2014/630797

    Article  Google Scholar 

  41. Puhr M, Santer FR, Neuwirt H, Marcias G, Hobisch A, Culig Z (2010) SOCS-3 antagonises the proliferative and migratory effects of fibroblast growth factor-2 in prostate cancer by inhibition of p44/p42 MAPK signalling. Endocr Relat Cancer 17(2):525–538. https://doi.org/10.1677/ERC-10-0007

    Article  CAS  PubMed  Google Scholar 

  42. Kim MH, Kim MS, Kim W, Kang MA, Cacalano NA, Kang SB, Shin YJ, Jeong JH (2015) Suppressor of cytokine signaling (SOCS) genes are silenced by DNA hypermethylation and histone deacetylation and regulate response to radiotherapy in cervical cancer cells. PLoS One 10(4):e0123133. https://doi.org/10.1371/journal.pone.0123133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank Dr. Cuauhtémoc Oros Ovalle (C.O.O) and Dr. Alfredo Loredo Ramírez (A.L.R.) for providing us the specimens and for helpful diagnostic confirmation respectively. We would also like to thank Dr. Peter B. Mandeville for conducting the statistical analyses.

Funding

This study was financially supported by the Mexican sectorial grant SSA/IMSS/ISSSTE-CONACYT under project number 2011–1-160607 (to L. Santos). Dr. Sugela Blancas, postdoctoral fellow and Rogelio Medina-Berlanga (M. Sc. scholarship no. 300170) received scholarships from Consejo Nacional de Ciencia y Tecnología (CONACYT, Mexico).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leticia Santos.

Ethics declarations

Ethical Approval

The bioethical committee of this Institution (Comisión de Seguridad e Higiene y Medio Ambiente en el Trabajo, CSHyMA-IPICYT) approved the experimental design of this work under the letter no. 003.

Informed Consent

The manuscript does not contain any studies with human participants by any of the authors and archive cases remained anonymous.

Conflict of Interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

ESM 1

(XLSX 53 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Blancas, S., Medina-Berlanga, R., Ortíz-García, L. et al. Protein Expression Analysis in Uterine Cervical Cancer for Potential Targets in Treatment. Pathol. Oncol. Res. 25, 493–501 (2019). https://doi.org/10.1007/s12253-018-0401-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12253-018-0401-0

Keywords

Navigation