Pathology & Oncology Research

, Volume 23, Issue 4, pp 745–752 | Cite as

Key Genes in Stomach Adenocarcinoma Identified via Network Analysis of RNA-Seq Data

  • Li Shen
  • Lizhi Zhao
  • Jiquan Tang
  • Zhiwei Wang
  • Weisong Bai
  • Feng Zhang
  • Shouli Wang
  • Weihua LiEmail author
Original Article


RNA-seq data of stomach adenocarcinoma (STAD) were analyzed to identify critical genes in STAD. Meanwhile, relevant small molecule drugs, transcription factors (TFs) and microRNAs (miRNAs) were also investigated. Gene expression data of STAD were downloaded from The Cancer Genome Atlas (TCGA). Differential analysis was performed with package edgeR. Relationships with correlation coefficient > 0.6 were retained in the gene co-expression network. Functional enrichment analysis was performed for the genes in the network with DAVID and KOBASS 2.0. Modules were identified using Cytoscape. Relevant small molecules drugs, transcription factors (TFs) and microRNAs (miRNAs) were revealed by using CMAP and WebGestalt databases. A total of 520 DEGs were identified between 285 STAD samples and 33 normal controls, including 244 up-regulated and 276 down-regulated genes. A gene co-expression network containing 53 DEGs and 338 edges was constructed, the genes of which were significantly enriched in focal adhesion, ECM-receptor interaction and vascular smooth muscle contraction pathways. Three modules were identified from the gene co-expression network and they were associated with skeletal system development, inflammatory response and positive regulation of cellular process, respectively. A total of 20 drugs, 9 TFs and 6 miRNAs were acquired that may regulate the DEGs. NFAT-COL1A1/ANXA1, HSF2-FOS, SREBP-IL1RN and miR-26-COL5A2 regulation axes may be important mechanisms for STAD.


Stomach adenocarcinoma Gene expression data Differentially expressed genes Gene co-expression network Functional enrichment analysis 


Compliance with Ethical Standards

Conflict of Interest

The authors declare no conflict of interest.


  1. 1.
    Lindblad M, Rodríguez LAG, Lagergren J (2005) Body mass, tobacco and alcohol and risk of esophageal, gastric cardia, and gastric non-cardia adenocarcinoma among men and women in a nested case-control study. Cancer Causes Control 16(3):285–294CrossRefPubMedGoogle Scholar
  2. 2.
    Orditura M, Galizia G, Sforza V, Gambardella V, Fabozzi A, Laterza MM, Andreozzi F, Ventriglia J, Savastano B, Mabilia A et al (2014) Treatment of gastric cancer. World J Gastroenterol 20(7):1635–1649CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Ema A, Yamashita K, Ushiku H, Kojo K, Minatani N, Kikuchi M, Mieno H, Moriya H, Hosoda K, Katada N (2014) Immunohistochemical analysis of RTKs expression identified HER3 as a prognostic indicator of gastric cancer. Cancer Sci 105(12):1591–1600CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Wu X, Chen Y, Li G, Xia L, Gu R, Wen X, Ming X, Chen H (2014) Her3 is associated with poor survival of gastric adenocarcinoma: Her3 promotes proliferation, survival and migration of human gastric cancer mediated by PI3K/AKT signaling pathway. Med Oncol 31(4):1–11Google Scholar
  5. 5.
    Zhang Y, Cai X, Chai N, Gu Y, Zhang S, Ding M, Cao H, Sha S, Yin J, Li M (2015) SIRT1 is reduced in gastric adenocarcinoma and acts as a potential tumor suppressor in gastric cancer. Gastrointest Tumors 2:109–123CrossRefGoogle Scholar
  6. 6.
    Okada K, Fujiwara Y, Takahashi T, Nakamura Y, Takiguchi S, Nakajima K, Miyata H, Yamasaki M, Kurokawa Y, Mori M (2013) Overexpression of forkhead box M1 transcription factor (FOXM1) is a potential prognostic marker and enhances chemoresistance for docetaxel in gastric cancer. Ann Surg Oncol 20(3):1035–1043CrossRefPubMedGoogle Scholar
  7. 7.
    Jiang W, Zhou F, Li N, Li Q, Wang L (2015) FOXM1-LDHA signaling promoted gastric cancer glycolytic phenotype and progression. Int J Clin Exp Pathol 8(6):6756–6763PubMedPubMedCentralGoogle Scholar
  8. 8.
    Zhang M, Wang X, Li W, Cui Y (2015) miR-107 and miR-25 simultaneously target LATS2 and regulate proliferation and invasion of gastric adenocarcinoma (GAC) cells. Biochem Biophys Res Commun 460(3):806–812CrossRefPubMedGoogle Scholar
  9. 9.
    Sun J, Nishiyama T, Shimizu K, Kadota K (2013) TCC: an R package for comparing tag count data with robust normalization strategies. BMC Bioinforma 14(1):1–14CrossRefGoogle Scholar
  10. 10.
    Robinson MD, McCarthy DJ, Smyth GK (2010) edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26(1):139–140CrossRefPubMedGoogle Scholar
  11. 11.
    Benjamini Y (2010) Discovering the false discovery rate. J R Stat Soc Ser B Stat Methodol 72(4):405–416CrossRefGoogle Scholar
  12. 12.
    Dawson JA, Ye S, Kendziorski C (2012) R/EBcoexpress: an empirical Bayesian framework for discovering differential co-expression. Bioinformatics 28(14):1939–1940CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Smoot ME, Ono K, Ruscheinski J, Wang PL, Ideker T (2011) Cytoscape 2.8: new features for data integration and network visualization. Bioinformatics 27(3):431–432CrossRefPubMedGoogle Scholar
  14. 14.
    Tanay A, Sharan R, Kupiec M, Shamir R (2004) Revealing modularity and organization in the yeast molecular network by integrated analysis of highly heterogeneous genomewide data. Proc Natl Acad Sci U S A 101(9):2981–2986CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Wu J, Mao X, Cai T, Luo J, Wei L (2006) KOBAS server: a web-based platform for automated annotation and pathway identification. Nucleic Acids Res 34(Web Server issue):W720–W724CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Rivera CG, Vakil R, Bader JS (2010) NeMo: network module identification in Cytoscape. BMC Bioinforma 11(Suppl 1):S61CrossRefGoogle Scholar
  17. 17.
    Maere S, Heymans K, Kuiper M (2005) BiNGO: a Cytoscape plugin to assess overrepresentation of gene ontology categories in biological networks. Bioinformatics 21(16):3448–3449CrossRefPubMedGoogle Scholar
  18. 18.
    Segal MR, Xiong H, Bengtsson H, Bourgon R, Gentleman R (2012) Querying genomic databases: refining the connectivity map. Stat Appl Genet Mol Biol 11(2):1544–6115Google Scholar
  19. 19.
    Zhang B, Kirov S, Snoddy J (2005) WebGestalt: an integrated system for exploring gene sets in various biological contexts. Nucleic Acids Res 33(suppl 2):W741–W748CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Wang J, Duncan D, Shi Z, Zhang B (2013) WEB-based GEne SeT AnaLysis toolkit (WebGestalt): update 2013. Nucleic Acids Res 41(Web Server issue):W77–W83CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Wu Q, Li X, Yang H, Lu C, You J, Zhang Z (2014) Extracellular matrix protein 1 is correlated to carcinogenesis and lymphatic metastasis of human gastric cancer. World J Surg Oncol 12(1):132–132CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Wala SJ, Karamchandani JR, Saleeb R, Evans A, Ding Q, Ibrahim R, Jewett M, Pasic M, Finelli A, Pace K (2015) An integrated genomic analysis of papillary renal cell carcinoma type 1 uncovers the role of focal adhesion and extracellular matrix pathways. Mol Oncol 9(8):1667–1677CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Shi Y, Wang J, Xin Z, Duan Z, Wang G, Li F (2015) Transcription factors and microRNA-Co-regulated genes in gastric cancer invasion in ex vivo. PLoS One 10(4):1330–1339Google Scholar
  24. 24.
    Willis CM, Klüppel M (2014) Chondroitin sulfate-E is a negative regulator of a pro-tumorigenic Wnt/beta-catenin-collagen 1 axis in breast cancer cells. PLoS One 9(8):e103966–e103966CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Fischer H, Stenling R, Rubio C, Lindblom A (2001) Colorectal carcinogenesis is associated with stromal expression of COL11A1 and COL5A2. Carcinogenesis 22(6):875–878CrossRefPubMedGoogle Scholar
  26. 26.
    Hui-Ying X-Z, Chun-Min L (2016) Inflammatory microenvironment contributes to epithelial-mesenchymal transition in gastric cancer. World J Gastroenterol 22(29):6619–6628CrossRefGoogle Scholar
  27. 27.
    Deng Q, He B, Liu X, Yue J, Ying H, Pan Y, Sun H, Chen J, Wang F, Gao T (2015) Prognostic value of pre-operative inflammatory response biomarkers in gastric cancer patients and the construction of a predictive model. J Transl Med 13(1):1–16CrossRefGoogle Scholar
  28. 28.
    Raja UM, Gopal G, Shirley S, Ramakrishnan AS, Rajkumar T (2017) Immunohistochemical expression and localization of cytokines/chemokines/growth factors in gastric cancer. Cytokine 89:82–90Google Scholar
  29. 29.
    Worst TS, Reiner V, Gabriel U, Weiß C, Erben P, Martini T, Bolenz C (2014) IL1RN and KRT13 expression in bladder cancer: association with pathologic characteristics and smoking status. Ther Adv Urol 2013:184602–184602Google Scholar
  30. 30.
    Yu G, Wang J, Chen Y, Wang X, Pan J, Li Q, Xie K (2008) Tissue microarray analysis reveals strong clinical evidence for a close association between loss of annexin A1 expression and nodal metastasis in gastric cancer. Clin Exp Metastasis 25(7):695–702CrossRefPubMedGoogle Scholar
  31. 31.
    Zhou L, Zhang JS, Yu JC, Cui QC, Zhou WX, Kang WM, Ma ZQ (2010) Negative association of c-fos expression as a favorable prognostic indicator in gastric cancer. Arch Med Res 41(3):201–206CrossRefPubMedGoogle Scholar
  32. 32.
    Oliveira-Ferrer L, Rößler K, Haustein V, Schröder C, Wicklein D, Maltseva D, Khaustova N, Samatov T, Tonevitsky A, Mahner S (2014) C-FOS suppresses ovarian cancer progression by changing adhesion. Br J Cancer 110(3):753–763CrossRefPubMedGoogle Scholar
  33. 33.
    Muller MR, Rao A (2010) NFAT, immunity and cancer: a transcription factor comes of age. Nat Rev Immunol 10(9):645–656CrossRefPubMedGoogle Scholar
  34. 34.
    Mancini M, Toker A (2009) NFAT proteins: emerging roles in cancer progression. Nat Rev Cancer 9(11):810–820CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Björk JK, Åkerfelt M, Joutsen J, Puustinen MC, Cheng F, Sistonen L, Nees M (2015) Heat-shock factor 2 is a suppressor of prostate cancer invasion. Oncogene 35(14):1770–1784CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Huang W-C, Li X, Liu J, Lin J, Chung LWK (2011) Activation of androgen receptor, lipogenesis and oxidative stress converged by SREBP-1 is responsible for regulating growth and progression of prostate cancer cells. Mol Cancer Res 10(1):133–142CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Qiu X, Zhu H, Liu S, Tao G, Jin J, Chu H, Wang M, Tong N, Gong W, Zhao Q (2016) Expression and prognostic value of microRNA-26a and microRNA-148a in gastric cancer. J Gastroenterol Hepatol. doi: 10.1111/jgh.13533
  38. 38.
    Giovanella BC, Hinz HR, Kozielski AJ, Stehlin JS, Silber R, Potmesil M (1991) Complete growth inhibition of human cancer xenografts in nude mice by treatment with 20-(S)-camptothecin. Cancer Res 51(11):3052–3055PubMedGoogle Scholar
  39. 39.
    Mochizuki Y, Ohashi N, Kojima H, Ishigure K, Kinoshita T, Eguchi T, Fujitake S, Ito S, Fujiwara M, Kodera Y (2013) CPT-11 as a second-line treatment for patients with advanced/metastatic gastric cancer who failed S-1 (CCOG0702). Cancer Chemother Pharmacol 72(3):629–635CrossRefPubMedGoogle Scholar
  40. 40.
    Lee MH, Yang JY, Cho Y, Park M, Woo HJ, Kim HW, Kwon HJ, Kim SH, Moon C, Kim TU (2016)Menadione induces apoptosis in a gastric cancer cell line mediated by down-regulation of X-linked inhibitor of apoptosis. Int J Clin Exp Med 9(2):2437–2443Google Scholar

Copyright information

© Arányi Lajos Foundation 2017

Authors and Affiliations

  • Li Shen
    • 1
  • Lizhi Zhao
    • 1
  • Jiquan Tang
    • 1
  • Zhiwei Wang
    • 1
  • Weisong Bai
    • 1
  • Feng Zhang
    • 1
  • Shouli Wang
    • 1
  • Weihua Li
    • 2
    Email author
  1. 1.Department of Digestive SurgeryHanZhong Central HospitalHanzhongChina
  2. 2.The People’s Hospital in Gansu ProvinceLanzhou CityChina

Personalised recommendations