Pathology & Oncology Research

, Volume 23, Issue 2, pp 225–234 | Cite as

Clinical Applications of Next-Generation Sequencing in Cancer Diagnosis

  • Leila Sabour
  • Maryam Sabour
  • Saeid GhorbianEmail author


With the advancement and improvement of new sequencing technology, next-generation sequencing (NGS) has been applied increasingly in cancer genomics research fields. More recently, NGS has been adopted in clinical oncology to advance personalized treatment of cancer. NGS is utilized to novel diagnostic and rare cancer mutations, detection of translocations, inversions, insertions and deletions, detection of copy number variants, detect familial cancer mutation carriers, provide the molecular rationale for appropriate targeted, therapeutic and prognostic. NGS holds many advantages, such as the ability to fully sequence all types of mutations for a large number of genes (hundreds to thousands) and the sensitivity, speed in a single test at a relatively low cost compared to be other sequencing modalities. Here we described the technology, methods and applications that can be immediately considered and some of the challenges that lie ahead.


NGS Cancer Next-generation sequencing Diagnosis Clinical practice 


Compliance with Ethical Standards

Conflict of Interest

Maryam Sabour declares that she has no conflict of interest. Leila Sabour declares that she has no conflict of interest. Saeid Ghorbian declares that he has no conflict of interest.

Ethical Approval

This article does not contain any studies with human participants performed by any of the authors.

Informed Consent

This article is not involved Informed Consent.


  1. 1.
    Jones S, Zhang X, Parsons DW, Lin JC-H, Leary RJ, Angenendt P, Mankoo P, Carter H, Kamiyama H, Jimeno A (2008) Core signaling pathways in human pancreatic cancers revealed by global genomic analyses. Science 321(5897):1801–1806CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Siegel R, Ward E, Brawley O, Jemal A (2011) Cancer statistics, 2011. CA Cancer J Clin 61(4):212–236CrossRefPubMedGoogle Scholar
  3. 3.
    Cahill DP, Kinzler KW, Vogelstein B, Lengauer C (1999) Genetic instability and darwinian selection in tumours. Trends Genet 15(12):M57–M60CrossRefGoogle Scholar
  4. 4.
    Subramanian J, Simon R (2010) Gene expression–based prognostic signatures in lung cancer: ready for clinical use? J Natl Cancer Inst 102(7):464–474CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Ioannidis JP, Panagiotou OA (2011) Comparison of effect sizes associated with biomarkers reported in highly cited individual articles and in subsequent meta-analyses. JAMA 305(21):2200–2210CrossRefPubMedGoogle Scholar
  6. 6.
    Kallioniemi A, Kallioniemi O-P, Sudar D, Rutovitz D, Gray JW, Waldman F, Pinkel D (1992) Comparative genomic hybridization for molecular cytogenetic analysis of solid tumors. Science 258(5083):818–821CrossRefPubMedGoogle Scholar
  7. 7.
    Armengol G, Capellà G, Farré L, Peinado MA, Miró R, Caballín MR (2001) Genetic evolution in the metastatic progression of human pancreatic cancer studied by CGH. Lab Investig 81(12):1703–1707CrossRefPubMedGoogle Scholar
  8. 8.
    Jiang JK, Chen YJ, Lin CH, Yu I, Lin JK (2005) Genetic changes and clonality relationship between primary colorectal cancers and their pulmonary metastases—an analysis by comparative genomic hybridization. Genes Chromosom Cancer 43(1):25–36CrossRefPubMedGoogle Scholar
  9. 9.
    Nishizaki T, DeVries S, Chew K, Goodson WH, Ljung B-M, Thor A, Waldman FM (1997) Genetic alterations in primary breast cancers and their metastases: direct comparison using modified comparative genomic hybridization. Genes Chromosom Cancer 19(4):267–272CrossRefPubMedGoogle Scholar
  10. 10.
    Petersen S, Aninat-Meyer M, Schlüns K, Gellert K, Dietel M, Petersen I (2000) Chromosomal alterations in the clonal evolution to the metastatic stage ofquamous cell carcinomas of the lung. Br J Cancer 82(1):65CrossRefPubMedGoogle Scholar
  11. 11.
    Schmidt-Kittler O, Ragg T, Daskalakis A, Granzow M, Ahr A, Blankenstein TJ, Kaufmann M, Diebold J, Arnholdt H, Müller P (2003) From latent disseminated cells to overt metastasis: genetic analysis of systemic breast cancer progression. Proc Natl Acad Sci 100(13):7737–7742CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Wagle N, Berger MF, Davis MJ, Blumenstiel B, DeFelice M, Pochanard P, Ducar M, Van Hummelen P, MacConaill LE, Hahn WC (2012) High-throughput detection of actionable genomic alterations in clinical tumor samples by targeted, massively parallel sequencing. Cancer discovery 2(1):82–93CrossRefPubMedGoogle Scholar
  13. 13.
    Leary RJ, Kinde I, Diehl F, Schmidt K, Clouser C, Duncan C, Antipova A, Lee C, McKernan K, Francisco M (2010) Development of personalized tumor biomarkers using massively parallel sequencing. Sci Transl Med 2(20):20ra14–20ra14CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    McBride DJ, Orpana AK, Sotiriou C, Joensuu H, Stephens PJ, Mudie LJ, Hämäläinen E, Stebbings LA, Andersson LC, Flanagan AM (2010) Use of cancer-specific genomic rearrangements to quantify disease burden in plasma from patients with solid tumors. Genes Chromosom Cancer 49(11):1062–1069CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Mardis ER (2011) A decade/'s perspective on DNA sequencing technology. Nature 470(7333):198–203CrossRefPubMedGoogle Scholar
  16. 16.
    Meyerson M, Gabriel S, Getz G (2010) Advances in understanding cancer genomes through second-generation sequencing. Nat Rev Genet 11(10):685–696CrossRefPubMedGoogle Scholar
  17. 17.
    Ku, C.-S., Wu, M., Cooper, D.N., Naidoo, N., Pawitan, Y., Pang, B., Iacopetta, B., Soong, R., 2012. Technological advances in DNA sequence enrichment and sequencing for germline genetic diagnosis.Google Scholar
  18. 18.
    Meldrum C, Doyle MA, Tothill RW (2011) Next-generation sequencing for cancer diagnostics: a practical perspective. The Clinical Biochemist Reviews 32(4):177PubMedPubMedCentralGoogle Scholar
  19. 19.
    Cronin M, Ross JS (2011) Comprehensive next-generation cancer genome sequencing in the era of targeted therapy and personalized oncology. Biomark Med 5(3):293–305CrossRefPubMedGoogle Scholar
  20. 20.
    Rizzo JM, Buck MJ (2012) Key principles and clinical applications of “next-generation” DNA sequencing. Cancer Prev Res 5(7):887–900CrossRefGoogle Scholar
  21. 21.
    Desai AN, Jere A (2012) Next-generation sequencing: ready for the clinics? Clin Genet 81(6):503–510CrossRefPubMedGoogle Scholar
  22. 22.
    Ross JS, Cronin M (2011) Whole cancer genome sequencing by next-generation methods. Am J Clin Pathol 136(4):527–539CrossRefPubMedGoogle Scholar
  23. 23.
    Schadt EE, Turner S, Kasarskis A (2010) A window into third-generation sequencing. Hum Mol Genet 19(R2):R227–R240CrossRefPubMedGoogle Scholar
  24. 24.
    Mardis ER (2010) The $1000 genome, the $100,000 analysis. Genome Med 2(11):84CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci 74(12):5463–5467CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Mardis ER (2013) Next-generation sequencing platforms. Annu Rev Anal Chem 6:287–303CrossRefGoogle Scholar
  27. 27.
    Ulahannan D, Kovac M, Mulholland P, Cazier J, Tomlinson I (2013) Technical and implementation issues in using next-generation sequencing of cancers in clinical practice. Br J Cancer 109(4):827–835CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Campbell PJ, Stephens PJ, Pleasance ED, O’Meara S, Li H, Santarius T, Stebbings LA, Leroy C, Edkins S, Hardy C (2008) Identification of somatically acquired rearrangements in cancer using genome-wide massively parallel paired-end sequencing. Nat Genet 40(6):722–729CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Chiang DY, Getz G, Jaffe DB, O’Kelly MJ, Zhao X, Carter SL, Russ C, Nusbaum C, Meyerson M, Lander ES (2009) High-resolution mapping of copy-number alterations with massively parallel sequencing. Nat Methods 6(1):99–103CrossRefPubMedGoogle Scholar
  30. 30.
    Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B (2008) Mapping and quantifying mammalian transcriptomes by RNA-seq. Nat Methods 5(7):621–628CrossRefPubMedGoogle Scholar
  31. 31.
    Thomas RK, Nickerson E, Simons JF, Jänne PA, Tengs T, Yuza Y, Garraway LA, LaFramboise T, Lee JC, Shah K (2006) Sensitive mutation detection in heterogeneous cancer specimens by massively parallel picoliter reactor sequencing. Nat Med 12(7):852–855CrossRefPubMedGoogle Scholar
  32. 32.
    Shah SP, Morin RD, Khattra J, Prentice L, Pugh T, Burleigh A, Delaney A, Gelmon K, Guliany R, Senz J (2009) Mutational evolution in a lobular breast tumour profiled at single nucleotide resolution. Nature 461(7265):809–813CrossRefPubMedGoogle Scholar
  33. 33.
    Campbell PJ, Yachida S, Mudie LJ, Stephens PJ, Pleasance ED, Stebbings LA, Morsberger LA, Latimer C, McLaren S, Lin M-L (2010) The patterns and dynamics of genomic instability in metastatic pancreatic cancer. Nature 467(7319):1109–1113CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Yachida S, Jones S, Bozic I, Antal T, Leary R, Fu B, Kamiyama M, Hruban RH, Eshleman JR, Nowak MA (2010) Distant metastasis occurs late during the genetic evolution of pancreatic cancer. Nature 467(7319):1114–1117CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Ding L, Ellis MJ, Li S, Larson DE, Chen K, Wallis JW, Harris CC, McLellan MD, Fulton RS, Fulton LL (2010) Genome remodelling in a basal-like breast cancer metastasis and xenograft. Nature 464(7291):999–1005CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Robbins CM, Tembe WA, Baker A, Sinari S, Moses TY, Beckstrom-Sternberg S, Beckstrom-Sternberg J, Barrett M, Long J, Chinnaiyan A (2011) Copy number and targeted mutational analysis reveals novel somatic events in metastatic prostate tumors. Genome Res 21(1):47–55CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Morey M, Fernández-Marmiesse A, Castiñeiras D, Fraga JM, Couce ML, Cocho JA (2013) A glimpse into past, present, and future DNA sequencing. Mol Genet Metab 110(1):3–24CrossRefPubMedGoogle Scholar
  38. 38.
    Foquet M, Samiee KT, Kong X, Chauduri BP, Lundquist PM, Turner SW, Freudenthal J, Roitman DB (2008) Improved fabrication of zero-mode waveguides for single-molecule detection. J Appl Phys 103(3):034301CrossRefGoogle Scholar
  39. 39.
    Eid J, Fehr A, Gray J, Luong K, Lyle J, Otto G, Peluso P, Rank D, Baybayan P, Bettman B (2009) Real-time DNA sequencing from single polymerase molecules. Science 323(5910):133–138CrossRefPubMedGoogle Scholar
  40. 40.
    Berger MF, Lawrence MS, Demichelis F, Drier Y, Cibulskis K, Sivachenko AY, Sboner A, Esgueva R, Pflueger D, Sougnez C (2011) The genomic complexity of primary human prostate cancer. Nature 470(7333):214–220CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Shah SP, Köbel M, Senz J, Morin RD, Clarke BA, Wiegand KC, Leung G, Zayed A, Mehl E, Kalloger SE (2009) Mutation of FOXL2 in granulosa-cell tumors of the ovary. N Engl J Med 360(26):2719–2729CrossRefPubMedGoogle Scholar
  42. 42.
    Jones SJ, Laskin J, Li YY, Griffith OL, An J, Bilenky M, Butterfield YS, Cezard T, Chuah E, Corbett R (2010) Evolution of an adenocarcinoma in response to selection by targeted kinase inhibitors. Genome Biol 11(8):R82CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Wiegand KC, Shah SP, Al-Agha OM, Zhao Y, Tse K, Zeng T, Senz J, McConechy MK, Anglesio MS, Kalloger SE (2010) ARID1A mutations in endometriosis-associated ovarian carcinomas. N Engl J Med 363(16):1532–1543CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Ley TJ, Mardis ER, Ding L, Fulton B, McLellan MD, Chen K, Dooling D, Dunford-Shore BH, McGrath S, Hickenbotham M (2008) DNA sequencing of a cytogenetically normal acute myeloid leukaemia genome. Nature 456(7218):66–72CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Mardis ER (2010) Cancer genomics identifies determinants of tumor biology. Genome Biol 11(5):211CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Mardis ER, Wilson RK (2009) Cancer genome sequencing: a review. Hum Mol Genet 18(R2):R163–R168CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Morin RD, Johnson NA, Severson TM, Mungall AJ, An J, Goya R, Paul JE, Boyle M, Woolcock BW, Kuchenbauer F (2010) Somatic mutations altering EZH2 (Tyr641) in follicular and diffuse large B-cell lymphomas of germinal-center origin. Nat Genet 42(2):181–185CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Hudson TJ, Anderson W, Aretz A, Barker AD, Bell C, Bernabé RR, Bhan M, Calvo F, Eerola I, Gerhard DS (2010) International network of cancer genome projects. Nature 464(7291):993–998CrossRefPubMedGoogle Scholar
  49. 49.
    McLendon R, Friedman A, Bigner D, Van Meir EG, Brat DJ, Mastrogianakis GM, Olson JJ, Mikkelsen T, Lehman N, Aldape K (2008) Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature 455(7216):1061–1068CrossRefGoogle Scholar
  50. 50.
    Shoubridge C, Tarpey PS, Abidi F, Ramsden SL, Rujirabanjerd S, Murphy JA, Boyle J, Shaw M, Gardner A, Proos A (2010) Mutations in the guanine nucleotide exchange factor gene IQSEC2 cause nonsyndromic intellectual disability. Nat Genet 42(6):486–488CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Bonnefond, A., Durand, E., Sand, O., De Graeve, F., Gallina, S., Busiah, K., Lobbens, S., Simon, A., Bellanné-Chantelot, C., Létourneau, L., 2010. Molecular diagnosis of neonatal diabetes mellitus using next-generation sequencing of the whole exome.Google Scholar
  52. 52.
    Bolze A, Byun M, McDonald D, Morgan NV, Abhyankar A, Premkumar L, Puel A, Bacon CM, Rieux-Laucat F, Pang K (2010) Whole-exome-sequencing-based discovery of human FADD deficiency. Am J Hum Genet 87(6):873–881CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Esteller M (2008) Epigenetics in cancer. N Engl J Med 358(11):1148–1159CrossRefPubMedGoogle Scholar
  54. 54.
    Garber JE, Offit K (2005) Hereditary cancer predisposition syndromes. J Clin Oncol 23(2):276–292CrossRefPubMedGoogle Scholar
  55. 55.
    Walsh T, Lee MK, Casadei S, Thornton AM, Stray SM, Pennil C, Nord AS, Mandell JB, Swisher EM, King M-C (2010) Detection of inherited mutations for breast and ovarian cancer using genomic capture and massively parallel sequencing. Proc Natl Acad Sci 107(28):12629–12633CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    De Lellis L, Mammarella S, Curia MC, Veschi S, Mokini Z, Bassi C, Sala P, Battista P, Mariani-Costantini R, Radice P (2011) Analysis of gene copy number variations using a method based on lab-on-a-chip technology. Tumori 98(1):126–136Google Scholar
  57. 57.
    Walsh T, Casadei S, Coats KH, Swisher E, Stray SM, Higgins J, Roach KC, Mandell J, Lee MK, Ciernikova S (2006) Spectrum of mutations in BRCA1, BRCA2, CHEK2, and TP53 in families at high risk of breast cancer. JAMA 295(12):1379–1388CrossRefPubMedGoogle Scholar
  58. 58.
    Ozcelik H, Shi X, Chang MC, Tram E, Vlasschaert M, Di Nicola N, Kiselova A, Yee D, Goldman A, Dowar M (2012) Long-range PCR and next-generation sequencing of BRCA1 and BRCA2 in breast cancer. The Journal of Molecular Diagnostics 14(5):467–475CrossRefPubMedGoogle Scholar
  59. 59.
    Hernan I, Borràs E, de Sousa Dias M, Gamundi MJ, Mañé B, Llort G, Agúndez JA, Blanca M, Carballo M (2012) Detection of genomic variations in BRCA1 and BRCA2 genes by long-range PCR and next-generation sequencing. The Journal of Molecular Diagnostics 14(3):286–293CrossRefPubMedGoogle Scholar
  60. 60.
    De Leeneer K, Hellemans J, De Schrijver J, Baetens M, Poppe B, Van Criekinge W, De Paepe A, Coucke P, Claes K (2011) Massive parallel amplicon sequencing of the breast cancer genes BRCA1 and BRCA2: opportunities, challenges, and limitations. Hum Mutat 32(3):335–344CrossRefPubMedGoogle Scholar
  61. 61.
    Lee W, Jiang Z, Liu J, Haverty PM, Guan Y, Stinson J, Yue P, Zhang Y, Pant KP, Bhatt D (2010) The mutation spectrum revealed by paired genome sequences from a lung cancer patient. Nature 465(7297):473–477CrossRefPubMedGoogle Scholar
  62. 62.
    Pleasance ED, Stephens PJ, O’Meara S, McBride DJ, Meynert A, Jones D, Lin M-L, Beare D, Lau KW, Greenman C (2010) A small-cell lung cancer genome with complex signatures of tobacco exposure. Nature 463(7278):184–190CrossRefPubMedGoogle Scholar
  63. 63.
    Pleasance ED, Cheetham RK, Stephens PJ, McBride DJ, Humphray SJ, Greenman CD, Varela I, Lin M-L, Ordóñez GR, Bignell GR (2010) A comprehensive catalogue of somatic mutations from a human cancer genome. Nature 463(7278):191–196CrossRefPubMedGoogle Scholar
  64. 64.
    Quail MA, Kozarewa I, Smith F, Scally A, Stephens PJ, Durbin R, Swerdlow H, Turner DJ (2008) A large genome center’s improvements to the Illumina sequencing system. Nat Methods 5(12):1005–1010CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Branton D, Deamer DW, Marziali A, Bayley H, Benner SA, Butler T, Di Ventra M, Garaj S, Hibbs A, Huang X (2008) The potential and challenges of nanopore sequencing. Nat Biotechnol 26(10):1146–1153CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Iafrate AJ, Feuk L, Rivera MN, Listewnik ML, Donahoe PK, Qi Y, Scherer SW, Lee C (2004) Detection of large-scale variation in the human genome. Nat Genet 36(9):949–951CrossRefPubMedGoogle Scholar
  67. 67.
    Sebat J, Lakshmi B, Troge J, Alexander J, Young J, Lundin P, Maner S, Massa H, Walker M, Chi M, Navin N, Lucito R, Healy J, Hicks J, Ye K, Reiner A, Gilliam TC, Trask B, Patterson N, Zetterberg A, Wigler M (2004) Large-scale copy number polymorphism in the human genome. Science 305(5683):525–528CrossRefPubMedGoogle Scholar
  68. 68.
    Stankiewicz P, Lupski JR (2010) Structural variation in the human genome and its role in disease. Annu Rev Med 61:437–455CrossRefPubMedGoogle Scholar
  69. 69.
    Zhang F, Gu W, Hurles ME, Lupski JR (2009) Copy number variation in human health, disease, and evolution. Annu Rev Genomics Hum Genet 10:451–481CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Korbel JO, Urban AE, Affourtit JP, Godwin B, Grubert F, Simons JF, Kim PM, Palejev D, Carriero NJ, Du L, Taillon BE, Chen Z, Tanzer A, Saunders AC, Chi J, Yang F, Carter NP, Hurles ME, Weissman SM, Harkins TT, Gerstein MB, Egholm M, Snyder M (2007) Paired-end mapping reveals extensive structural variation in the human genome. Science 318(5849):420–426CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Stephens PJ, McBride DJ, Lin ML, Varela I, Pleasance ED, Simpson JT, Stebbings LA, Leroy C, Edkins S, Mudie LJ, Greenman CD, Jia M, Latimer C, Teague JW, Lau KW, Burton J, Quail MA, Swerdlow H, Churcher C, Natrajan R, Sieuwerts AM, Martens JW, Silver DP, Langerod A, Russnes HE, Foekens JA, Reis-Filho JS, van ‘t Veer L, Richardson AL, Borresen-Dale AL, Campbell PJ, Futreal PA, Stratton MR (2009) Complex landscapes of somatic rearrangement in human breast cancer genomes. Nature 462(7276):1005–1010CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Abyzov A, Urban AE, Snyder M, Gerstein M (2011) CNVnator: an approach to discover, genotype, and characterize typical and atypical CNVs from family and population genome sequencing. Genome Res 21(6):974–984CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Ivakhno S, Royce T, Cox AJ, Evers DJ, Cheetham RK, Tavare S (2010) CNAseg--a novel framework for identification of copy number changes in cancer from second-generation sequencing data. Bioinformatics 26(24):3051–3058CrossRefPubMedGoogle Scholar
  74. 74.
    Kim TM, Luquette LJ, Xi R, Park PJ (2010) rSW-seq: algorithm for detection of copy number alterations in deep sequencing data. BMC Bioinformatics 11:432CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Klambauer G, Schwarzbauer K, Mayr A, Clevert DA, Mitterecker A, Bodenhofer U, Hochreiter S (2012) cn.MOPS: mixture of Poissons for discovering copy number variations in next-generation sequencing data with a low false discovery rate. Nucleic Acids Res 40(9):e69CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Magi A, Benelli M, Yoon S, Roviello F, Torricelli F (2011) Detecting common copy number variants in high-throughput sequencing data by using joint SLM algorithm. Nucleic Acids Res 39(10):e65CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Medvedev P, Stanciu M, Brudno M (2009) Computational methods for discovering structural variation with next-generation sequencing. Nat Methods 6(11 Suppl):S13–S20CrossRefPubMedGoogle Scholar
  78. 78.
    Miller CA, Hampton O, Coarfa C, Milosavljevic A (2011) ReadDepth: a parallel R package for detecting copy number alterations from short sequencing reads. PLoS One 6(1):e16327CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Waszak SM, Hasin Y, Zichner T, Olender T, Keydar I, Khen M, Stutz AM, Schlattl A, Lancet D, Korbel JO (2010) Systematic inference of copy-number genotypes from personal genome sequencing data reveals extensive olfactory receptor gene content diversity. PLoS Comput Biol 6(11):e1000988CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Xie C, Tammi MT (2009) CNV-seq, a new method to detect copy number variation using high-throughput sequencing. BMC Bioinformatics 10:80CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Yoon S, Xuan Z, Makarov V, Ye K, Sebat J (2009) Sensitive and accurate detection of copy number variants using read depth of coverage. Genome Res 19(9):1586–1592CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Holt C, Losic B, Pai D, Zhao Z, Trinh Q, Syam S, Arshadi N, Jang GH, Ali J, Beck T, McPherson J, Muthuswamy LB (2014) Wave CNV: allele-specific copy number alterations in primary tumors and xenograft models from next-generation sequencing. Bioinformatics 30(6):768–774CrossRefPubMedGoogle Scholar
  83. 83.
    de Sanjose S, Leone M, Berez V, Izquierdo A, Font R, Brunet JM, Louat T, Vilardell L, Borras J, Viladiu P, Bosch FX, Lenoir GM, Sinilnikova OM (2003) Prevalence of BRCA1 and BRCA2 germline mutations in young breast cancer patients: a population-based study. Int J Cancer 106(4):588–593CrossRefPubMedGoogle Scholar
  84. 84.
    Moller P, Hagen AI, Apold J, Maehle L, Clark N, Fiane B, Lovslett K, Hovig E, Vabo A (2007) Genetic epidemiology of BRCA mutations--family history detects less than 50 % of the mutation carriers. Eur J Cancer 43(11):1713–1717CrossRefPubMedGoogle Scholar
  85. 85.
    Risch HA, McLaughlin JR, Cole DE, Rosen B, Bradley L, Fan I, Tang J, Li S, Zhang S, Shaw PA, Narod SA (2006) Population BRCA1 and BRCA2 mutation frequencies and cancer penetrances: a kin-cohort study in Ontario, Canada. J Natl Cancer Inst 98(23):1694–1706CrossRefPubMedGoogle Scholar
  86. 86.
    Farmer H, McCabe N, Lord CJ, Tutt AN, Johnson DA, Richardson TB, Santarosa M, Dillon KJ, Hickson I, Knights C, Martin NM, Jackson SP, Smith GC, Ashworth A (2005) Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature 434(7035):917–921CrossRefPubMedGoogle Scholar
  87. 87.
    Morgan JE, Carr IM, Sheridan E, Chu CE, Hayward B, Camm N, Lindsay HA, Mattocks CJ, Markham AF, Bonthron DT, Taylor GR (2010) Genetic diagnosis of familial breast cancer using clonal sequencing. Hum Mutat 31(4):484–491CrossRefPubMedGoogle Scholar
  88. 88.
    Schroeder C, Stutzmann F, Weber BH, Riess O, Bonin M (2010) High-throughput resequencing in the diagnosis of BRCA1/2 mutations using oligonucleotide resequencing microarrays. Breast Cancer Res Treat 122(1):287–297CrossRefPubMedGoogle Scholar
  89. 89.
    Summerer D, Wu H, Haase B, Cheng Y, Schracke N, Stahler CF, Chee MS, Stahler PF, Beier M (2009) Microarray-based multicycle-enrichment of genomic subsets for targeted next-generation sequencing. Genome Res 19(9):1616–1621CrossRefPubMedPubMedCentralGoogle Scholar
  90. 90.
    Walsh T, Lee MK, Casadei S, Thornton AM, Stray SM, Pennil C, Nord AS, Mandell JB, Swisher EM, King MC (2010) Detection of inherited mutations for breast and ovarian cancer using genomic capture and massively parallel sequencing. Proc Natl Acad Sci U S A 107(28):12629–12633CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Arányi Lajos Foundation 2016

Authors and Affiliations

  1. 1.Department of Molecular Biology, Ahar BranchIslamic Azad UniversityAharIran

Personalised recommendations