Advertisement

Pathology & Oncology Research

, Volume 23, Issue 2, pp 369–376 | Cite as

miRNA-429 Inhibits Astrocytoma Proliferation and Invasion by Targeting BMI1

  • Gang Peng
  • Yiwei Liao
  • Chenfu ShenEmail author
Original Article

Abstract

Glioblastoma multiforme (GBM), the most common primary brain cancer in adults, is usually the most lethal type of brain tumor. MicroRNAs (miRNAs) are a class of small, non-coding RNA molecules that deeply involves with the regulation of gene expression and cellular processes, including proliferation, apoptosis, migration and invasion. The objective of the study is to investigate the effect of miRNA-429 on human glioblastoma tissues and cell lines. miRNA-429 expressions in human glioblastoma, normal brain tissue samples, and human malignant glioma cell lines (U87, U251 and LN229) were compared using reverse transcription-quantitative PCR and western blot methods. U251 cell lines were transfected with miRNA-429 mimics, and then the effects of miRNA-429 on cell proliferation and invasion were investigated by CCK8 and Transwell invasion assay, respectively. It was found that miRNA-429 expression was significantly reduced in the examined Glioblastoma samples and human glioma cell lines. Overexpression of miRNA-429 inhibited Glioblastoma cell proliferation and invasion. Additionally, the present study also showed that BMI1 was a functional target of miRNA-429. Overexpression of BMI1 undermined the inhibition effect of miRNA-429 in glioblastoma and U251 cell lines. The current study demonstrated that miRNA-429, as a tumor suppressor gene, was capable of negatively regulating the expression of BMI1 in U251 cells.

Keywords

Glioblastoma miRNA-429 BMI1 Proliferation Invasion 

Notes

Conflict of Interest

This manuscript was supported by China hunan provincial science & technology department, grant No: 2013FJ4102.

References

  1. 1.
    Wen PY, Kesari S (2008) Malignant gliomas in adults. N Engl J Med 359(5):492–507. doi: 10.1056/NEJMra0708126 CrossRefPubMedGoogle Scholar
  2. 2.
    Johnson DR, O’Neill BP (2012) Glioblastoma survival in the United States before and during the temozolomide era. J Neuro-Oncol 107(2):359–364. doi: 10.1007/s11060-011-0749-4 CrossRefGoogle Scholar
  3. 3.
    Lu J, Getz G, Miska EA, Alvarez-Saavedra E, Lamb J, Peck D, et al. (2005) MicroRNA expression profiles classify human cancers. Nature 435(7043):834–838. doi: 10.1038/nature03702 CrossRefPubMedGoogle Scholar
  4. 4.
    Croce CM (2009) Causes and consequences of microRNA dysregulation in cancer. Nat Rev Genet 10(10):704–714. doi: 10.1038/nrg2634 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Cho WC (2010) MicroRNAs in cancer - from research to therapy. Biochim Biophys Acta 1805(2):209–217. doi: 10.1016/j.bbcan.2009.11.003 PubMedGoogle Scholar
  6. 6.
    Peng G, Yuan X, Yuan J, Liu Q, Dai M, Shen C, et al. (2015 Nov) miR-25 promotes glioblastoma cell proliferation and invasion by directly targeting NEFL. Mol Cell Biochem 409(1–2):103–111. doi: 10.1007/s11010-015-2516-x Epub 2015 Jul 26
  7. 7.
    Chan JA, Krichevsky AM, Kosik KS (2005) MicroRNA-21 Is an Antiapoptotic Factor in Human Glioblastoma Cells. Cancer Res 65:6029. doi: 10.1158/0008–5472.CAN-05-0137 CrossRefPubMedGoogle Scholar
  8. 8.
    Coon SW, Savera AT, Zarbo RJ, Benninger MS, Chase GA, Rybicki BA, et al. (2004) Prognostic implications of loss of heterozygosity at 8p21 and 9p21 in head and neck squamous cell carcinoma. Int J Cancer 111(2):206–212. doi: 10.1002/ijc.20254 CrossRefPubMedGoogle Scholar
  9. 9.
    Tang J, Li L, Huang W, Sui C, Yang Y, Lin X, et al. (2015) MiRNA-429 increases the metastatic capability of HCC via regulating classic Wnt pathway rather than epithelial-mesenchymal transition. Cancer Lett 364(1):33–43. doi: 10.1016/j.canlet.2015.04.023 CrossRefPubMedGoogle Scholar
  10. 10.
    Yoneyama K, Ishibashi O, Kawase R, Kurose K, Takeshita T (2015) miR-200a, miR-200b and miRNA-429 are onco-miRs that target the PTEN gene in endometrioid endometrial carcinoma. Anticancer Res 35(3):1401–1410PubMedGoogle Scholar
  11. 11.
    Zhang M, Dong BB, Lu M, Zheng MJ, Chen H, Ding JZ, et al.. miRNA-429 functions as a tumor suppressor by targeting FSCN1 in gastric cancer cells. Onco Targets Ther 2016;9:1123–1133. doi: 10.2147/OTT.S91879. eCollection 2016. PMID: 27042104
  12. 12.
    Lei W, Liu YE, Zheng Y, Qu L (2015) MiRNA-429 inhibits oral squamous cell carcinoma growth by targeting ZEB1. Med Sci Monit 21:383–389. doi: 10.12659/MSM.893412 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Zang W, Wang Y, Du Y, Xuan X, Wang T, Li M, et al. (2014) Differential expression profiling of microRNAs and their potential involvement in esophageal squamous cell carcinoma. Tumour Biol 35(4):3295–3304. doi: 10.1007/s13277-013-1432-5 CrossRefPubMedGoogle Scholar
  14. 14.
    Iorio MV, Croce CM (2012) MicroRNA dysregulation in cancer: diagnostics, monitoring and therapeutics. A comprehensive review. EMBO Mol Med 4(3):143–159. doi: 10.1002/emmm.201100209 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Sana J, Hajduch M, Michalek J, Vyzula R, Slaby O (2011) MicroRNAs and glioblastoma: roles in core signalling pathways and potential clinical implications. J Cell Mol Med 15(8):1636–1644. doi: 10.1111/j.1582-4934.2011.01317.x CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Macoska JA, Trybus TM, Benson PD, Sakr WA, Grignon DJ, Wojno KD, et al. (1995) Evidence for three tumor suppressor gene loci on chromosome 8p in human prostate cancer. Cancer Res 55(22):5390–5395PubMedGoogle Scholar
  17. 17.
    Shenouda SK, Alahari SK (2009) MicroRNA function in cancer: oncogene or a tumor suppressor? Cancer Metastasis Rev 28(3–4):369–378. doi: 10.1007/s10555-009-9188-5 CrossRefPubMedGoogle Scholar
  18. 18.
    Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116(2):281–297CrossRefPubMedGoogle Scholar
  19. 19.
    Amaral JD, Xavier JM, Steer CJ, Rodrigues CM (2010) Targeting the p53 pathway of apoptosis. Curr Pharm Des 16:2493–2503CrossRefPubMedGoogle Scholar
  20. 20.
    Garg M (2012) MicroRNAs, stem cells and cancer stem cells. World J Stem Cells 4:62–70CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Qiu M, Liang Z, Chen L, Tan G, Wang K, Liu L, et al. (2015) MicroRNA-429 suppresses cell proliferation, epithelial-mesenchymal transition, and metastasis by direct targeting of BMI1 and E2F3 in renal cell carcinoma. Urol Oncol. 33(7):332.e9–332.18. doi: 10.1016/ j.urolonc. 2015. 03.016
  22. 22.
    Cristobal I, Rincon R, Manso R, Carames C, Aguilera O, Madoz-Gurpide J, et al. (2014) Deregulation of miR-200b, miR-200c and miRNA-429 indicates its potential relevant role in patients with colorectal cancer liver metastasis. J Surg Oncol 110(4):484–485. doi: 10.1002/jso.23661 CrossRefPubMedGoogle Scholar
  23. 23.
    Ye ZB, Ma G, Zhao YH, Xiao Y, Zhan Y, Jing C, et al. (2015) miRNA-429 inhibits migration and invasion of breast cancer cells in vitro. Int J Oncol 46(2):531–538. doi: 10.3892/ijo.2014.2759 PubMedGoogle Scholar
  24. 24.
    Tian X, Wei Z, Wang J, Liu P, Qin Y, Zhong M (2015) MicroRNA-429 inhibits the migration and invasion of colon cancer cells by targeting PAK6/cofilin signaling. Oncol Rep 34(2):707–714. doi: 10.3892/or.2015.4039 PubMedGoogle Scholar
  25. 25.
    Zhu P, Zhang J, Zhu J, Shi J, Zhu Q, Gao Y (2015) MiRNA-429 induces gastric carcinoma cell apoptosis through Bcl-2. Cell Physiol Biochem 37(4):1572–1580. doi: 10.1159/000 438524 CrossRefPubMedGoogle Scholar
  26. 26.
    Wang Y, Li M, Zang W, Ma Y, Wang N, Li P, et al. (2013) MiRNA-429 up-regulation induces apoptosis and suppresses invasion by targeting Bcl-2 and SP-1 in esophageal carcinoma. Cell Oncol (Dordr) 36(5):385–394. doi: 10.1007/s13402-013-0144-6 CrossRefGoogle Scholar
  27. 27.
    Liu X, Liu Y, Wu S, Shi X, Li L, Zhao J, et al. (2014) Tumor-suppressing effects of miRNA-429 on human osteosarcoma. Cell Biochem Biophys 70(1):215–224. doi: 10.1007/s12013-014-9885-8 CrossRefPubMedGoogle Scholar
  28. 28.
    Ouyang Y, Gao P, Zhu B, Chen X, Lin F, Wang X, et al. (2015) Downregulation of microRNA-429 inhibits cell proliferation by targeting p27Kip1 in human prostate cancer cells. Mol Med Rep 11(2):1435–1441. doi: 10.3892/mmr.2014.2782 PubMedGoogle Scholar

Copyright information

© Arányi Lajos Foundation 2016

Authors and Affiliations

  1. 1.Department of NeurosurgeryXiangya Hospital of Central South UniversityChangsha CityChina

Personalised recommendations