Advertisement

Pathology & Oncology Research

, Volume 23, Issue 2, pp 317–322 | Cite as

17β-hydroxysteroid dehydrogenase type Gene 1937 A > G Polymorphism as a Risk Factor for Cervical Cancer Progression in the Polish Population

  • Anna Lutkowska
  • Andrzej Roszak
  • Pawel P. JagodzińskiEmail author
Original Article

Abstract

The role of 17β-estradiol (E2) in the development of cervical tumor (CT) has been demonstrated. 17β Hydroxysteroid dehydrogenase type 1 (HSD17B1) converts estrone (E1) into E2. We aimed to study the distribution of the HSD17B1937 A > G (rs605059) single nucleotide polymorphism (SNP) in women (n = 383) with CT and controls (n = 401) from the Polish population. The p-trend value evaluated for HSD17B1 rs605059 was 0.0233 for all patients. The A/A vs G/G genotype significantly contributed to all patients with CT, and the Odds Ratio (OR) was 1.570 (95 % CI = 1.053–2.343; p = 0.0266). Stratification of the patients based on tumor stage and histological grade indicated the contribution of HSD17B1937 A > G to stages III and IV. The p-value was 0.0010. The OR for the A/A vs G/G genotype was 2.992 (95 % CI = 1.627–5.502, p = 0.0003), the OR for the A/G vs G/G genotype was 2.545 (95 % CI = 1.410–4.593, p = 0.0015) and the OR for the A/A and A/G vs G/G genotype was 2.724 (95 % CI = 1.546–4.799, p = 0.0004). Moreover, we observed a contribution of the rs605059 SNP to histological grade G3 status. The p-value was 0.0042. The OR for the A/A vs G/G genotype was 5.632 (95 % CI = 1.644–19.290, p = 0.0026), the OR for the A/G vs G/G genotype was 4.213 (95 % CI = 1.244–14.265, p = 0.0113) and the OR for the A/A and A/G vs G/G genotype was 4.780 (95 % CI = 1.456–15.687, p = 0.0033). Our study indicated that the HSD17B1937 A > G transition is a risk factor for CT, especially for stages III and IV and histological grade G3.

Keywords

Cervical carcinoma HSD17B1 Polymorphisms 

Notes

Acknowledgments

This work was supported by grant no. 502-01-01124182-07474 from the Poznań University of Medical Sciences. The technical assistance of Ms. Agnieszka Milkuczewska is gratefully acknowledged. There are no conflicts of interest associated with this study.

References

  1. 1.
    Forouzanfar MH, Foreman KJ, Delossantos AM, Lozano R, Lopez AD, Murray CJ, Naghavi M (2011) Breast and cervical cancer in 187 countries between 1980 and 2010: a systematic analysis. Lancet 378:1461–1484CrossRefPubMedGoogle Scholar
  2. 2.
    Walboomers JM, Jacobs MV, Manos MM, Bosch FX, Kummer JA, Shah KV, Snijders PJ, Peto J, Meijer CJ, Munoz N (1999) Human papillomavirus is a necessary cause of invasive cervical cancer worldwide. J Pathol 189:12–19CrossRefPubMedGoogle Scholar
  3. 3.
    Nguyen HP, Ramírez-Fort MK, Rady PL (2014) The biology of human papillomaviruses. Curr Probl Dermatol 45:19–32CrossRefPubMedGoogle Scholar
  4. 4.
    Moody CA, Laimins LA (2010) Human papillomavirus oncoproteins: pathways to transformation. Nat Rev Cancer 10:550–560CrossRefPubMedGoogle Scholar
  5. 5.
    Kasap B, Yetimalar H, Keklik A, Yildiz A, Cukurova K, Soylu F (2011) Prevalence and risk factors for human papillomavirus DNA in cervical cytology. Eur J Obstet Gynecol Reprod Biol 159:168–171CrossRefPubMedGoogle Scholar
  6. 6.
    International Collaboration of Epidemiological Studies of Cervical Cancer, Appleby P, Beral V, de Berrington González A, Colin D, Franceschi S, Goodhill A, Green J, Peto J, Plummer M, Sweetland S (2007) Cervical cancer and hormonal contraceptives: collaborative reanalysis of individual data for 16,573 women with cervical cancer and 35,509 women without cervical cancer from 24 epidemiological studies. Lancet 370:1609–1621CrossRefGoogle Scholar
  7. 7.
    Castellsague X, Munoz N (2003) Chapter 3: cofactors in human papillomavirus carcinogenesis—role of parity, oral contraceptives, and tobacco smoking. J Natl Cancer Inst Monogr:20–28Google Scholar
  8. 8.
    Almonte M, Albero G, Molano M, Carcamo C, García PJ, Pérez G (2008) Risk factors for human papillomavirus exposure and co factors for cervical cancer in Latin America and the Caribbean. Vaccine 26:L16–L36CrossRefPubMedGoogle Scholar
  9. 9.
    Deligeoroglou E, Giannouli A, Athanasopoulos N, Karountzos V, Vatopoulou A, Dimopoulos K, Creatsas G (2013) HPV infection: Immunological aspects and their utility in future therapy. Infect Dis Obstet Gynecol 2013:540850CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Ault KA (2006) Epidemiology and natural history of human papillomavirus infections in the female genital tract. Infect Dis Obstet Gynecol 2006:40470CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    De Azambuja K, Barman P, Toyama J, Elashoff D, Lawson GW, Williams LK, Chua K, Lee D, Kehoe JJ, Brodkorb A, Schwiebert R, Kitchen S, Bhimani A, Wiley DJ (2014) Validation of an HPV16-mediated carcinogenesis mouse model. In Vivo 28:761–767PubMedGoogle Scholar
  12. 12.
    Shai A, Brake T, Somoza C, Lambert PF (2007) The human papillomavirus E6 oncogene dysregulates the cell cycle and contributes to cervical carcinogenesis through two independent activities. Cancer Res 67:1626–1635CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Elson DA, Riley RR, Lacey A, Thordarson G, Talamantes FJ, Arbeit JM (2000) Sensitivity of the cervical transformation zone to estrogen-induced squamous carcinogenesis. Cancer Res 60:1267–1275PubMedGoogle Scholar
  14. 14.
    Cortés-Malagón EM, Bonilla-Delgado J, Díaz-Chávez J, Hidalgo-Miranda A, Romero-Cordoba S, Uren A, Celik H, McCormick M, Munguía-Moreno JA, Ibarra-Sierra E, Escobar-Herrera J, Lambert PF, Mendoza-Villanueva D, Bermudez-Cruz RM, Gariglio P (2013) Gene expression profile regulated by the HPV16 E7 oncoprotein and estradiol in cervical tissue. Virology 447:155–165CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Mitrani-Rosenbaum S, Tsvieli R, Tur-Kaspa R (1989) Oestrogen stimulates differential transcription of human papillomavirus type 16 in SiHa cervical carcinoma cells. J Gen Virol 70:2227–2232CrossRefPubMedGoogle Scholar
  16. 16.
    Correa I, Cerbón MA, Salazar AM, Solano JD, García-Carrancá A, Quintero A (2002) Differential p53 protein expression level in human cancer-derived cell lines after estradiol treatment. Arch Med Res 33:455–459CrossRefPubMedGoogle Scholar
  17. 17.
    Ruutu M, Wahlroos N, Syrjänen K, Johansson B, Syrjänen S (2006) Effects of 17beta-estradiol and progesterone on transcription of human papillomavirus 16 E6/E7 oncogenes in CaSki and SiHa cell lines. Int J Gynecol Cancer 16:1261–1268CrossRefPubMedGoogle Scholar
  18. 18.
    Wang Q, Li X, Wang L, Feng YH, Zeng R, Gorodeski G (2004) Antiapoptotic effects of estrogen in normal and cancer human cervical epithelial cells. Endocrinology 145:5568–5579CrossRefPubMedGoogle Scholar
  19. 19.
    Huang Y, Li J, Xiang L, Han D, Shen X, Wu X (2012) 17β-Oestradiol activates proteolysis and increases invasion through phosphatidylinositol 3-kinase pathway in human cervical cancer cells. Eur J Obstet Gynecol Reprod Biol 165:307–312CrossRefPubMedGoogle Scholar
  20. 20.
    Arbeit JM, Howley PM, Hanahan D (1996) Chronic estrogen-induced cervical and vaginal squamous carcinogenesis in human papillomavirus type 16 transgenic mice. Proc Natl Acad Sci U S A 93:2930–2935CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Brake T, Lambert PF (2005) Estrogen contributes to the onset, persistence, and malignant progression of cervical cancer in a human papillomavirus-transgenic mouse model. Proc Natl Acad Sci U S A 102:2490–2495CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Simpson ER (2003) Sources of estrogen and their importance. J Steroid Biochem Mol Biol 86:225–230CrossRefPubMedGoogle Scholar
  23. 23.
    Simpson E, Rubin G, Clyne C, Robertson K, O’Donnell L, Davis S, Jones M (1999) Local estrogenbiosynthesis in males and females. Endocr Relat Cancer 6:131–137CrossRefPubMedGoogle Scholar
  24. 24.
    Luu-The V, Labrie F (2010) The intracrine sex steroid biosynthesis pathways. Prog Brain Res 181:177–192CrossRefPubMedGoogle Scholar
  25. 25.
    Lukacik P, Kavanagh KL, Oppermann U (2006) Structure and function of human 17-hydroxysteroid dehydrogenases. Mol Cell Endocrinol 248:61–71CrossRefPubMedGoogle Scholar
  26. 26.
    Vihko P, Isomaa V, Ghosh D (2001) Structure and function of 17beta-hydroxysteroid dehydrogenase type 1 and type 2. Mol Cell Endocrinol 171:71–76CrossRefPubMedGoogle Scholar
  27. 27.
    Sawetawan C, Milewich L, Word RA, Carr BR, Rainey WE (1994) Compartmentalization of type I 17β-hydroxysteroid oxidoreductase in the human ovary. Mol Cell Endocrinol 99:161–168CrossRefPubMedGoogle Scholar
  28. 28.
    Fournet-Dulguerov N, MacLusky NJ, Leranth CZ, Todd R, Mendelson CR, Simpson ER, Naftolin F (1987) Immunohistochemical localization of aromatase cytochrome P-450 and estradiol dehydrogenase in the syncytiotrophoblast of the human placenta. J Clin Endocrinol Metab 65:757–764CrossRefPubMedGoogle Scholar
  29. 29.
    Feigelson HS, McKean-Cowdin R, Coetzee GA, Stram DO, Kolonel LN, Henderson BE (2001) Building a multigenic model of breast cancer susceptibility: CYP17 and HSD17B1 are two important candidates. Cancer Res 61:785–789PubMedGoogle Scholar
  30. 30.
    AH W, Seow A, Arakawa K, Van Den Berg D, Lee HP, MC Y (2003) HSD17B1 and CYP17 polymorphisms and breast cancer risk among Chinese women in Singapore. Int J Cancer 104:450–457CrossRefGoogle Scholar
  31. 31.
    Yao L, Cao LH, Qiu LX, Yu L (2010) The association between HSD17B1 Ser312Gly polymorphism and breast cancer risk: a meta-analysis including 31,053 subjects. Breast Cancer Res Treat 123:577–580CrossRefPubMedGoogle Scholar
  32. 32.
    Kato I, Cichon M, Yee CL, Land S, Korczak JF (2009) African American-preponderant single nucleotide polymorphisms (SNPs) and risk of breast cancer. Cancer Epidemiol 33:24–30CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Obazee O, Justenhoven C, Winter S, Chang-Claude J, Rudolph A, Seibold P, Flesch-Janys D, Hannelius U, Li J, Humphreys K, Hall P, Giles G, Severi G, Baglietto L, Southey M, Rabstein S, Harth V, Lotz A, Pesch B, Brüning T, Baisch C, Ko YD, Hamann U, Brauch H (2013) Confirmation of the reduction of hormone replacement therapy-related breast cancer risk for carriers of the HSD17B1_937_G variant. Breast Cancer Res Treat 138:543–548CrossRefPubMedGoogle Scholar
  34. 34.
    Iwasaki M, Hamada GS, Nishimoto IN, Netto MM, Motola J Jr, Laginha FM, Kasuga Y, Yokoyama S, Onuma H, Nishimura H, Kusama R, Kobayashi M, Ishihara J, Yamamoto S, Hanaoka T, Tsugane S (2010) Dietary isoflavone intake, polymorphisms in the CYP17, CYP19, 17beta-HSD1, and SHBG genes, and risk of breast cancer in case-control studies in Japanese, Japanese Brazilians, and non-Japanese Brazilians. Nutr Cancer 62:466–475Google Scholar
  35. 35.
    Luu-The V (2001) Analysis and characteristics of multiple types of human 17beta-hydroxysteroid dehydrogenase. J Steroid Biochem Mol Biol 76:143–151CrossRefPubMedGoogle Scholar
  36. 36.
    Miettinen M, Mustonen M, Poutanen M, Isomaa V, Wickman M, Söderqvist G, Vihko R, Vihko P (1999) 17Beta-hydroxysteroid dehydrogenases in normal human mammary epithelial cells and breast tissue. Breast Cancer Res Treat 57:175–182CrossRefPubMedGoogle Scholar
  37. 37.
    Vihko P, Härkönen P, Soronen P, Törn S, Herrala A, Kurkela R, Pulkka A, Oduwole O, Isomaa V (2004) 17 beta-hydroxysteroid dehydrogenases--their role in pathophysiology. Mol Cell Endocrinol 215:83–88CrossRefPubMedGoogle Scholar
  38. 38.
    Tomaszewska A, Roszak A, Pawlik P, Sajdak S, Jagodziński PP (2015) Increased 17ß-hydroxysteroid dehydrogenase type 1 levels in primary cervical cancer. Biomed Pharmacother 72:179–183CrossRefPubMedGoogle Scholar
  39. 39.
    Jaakkola S, Pukkala E, Lyytinen HK, Ylikorkala O (2012) Postmenopausal estradiol–progestagen therapy and risk for uterine cervical cancer. Int J Cancer 131:E537–E543CrossRefPubMedGoogle Scholar
  40. 40.
    Cong RJ, Huang ZY, Cong L, Ye Y, Wang Z, Zha L, Cao LP, XW S, Yan J, Li YB (2012) Polymorphisms in genes HSD17B1 and HSD17B2 and uterine leiomyoma risk in Chinese women. Arch Gynecol Obstet 286:701–705CrossRefPubMedGoogle Scholar
  41. 41.
    Setiawan VW, Hankinson SE, Colditz GA, Hunter DJ, De Vivo I (2004) HSD17B1 gene polymorphisms and risk of endometrial and breast cancer. Cancer Epidemiol Biomark Prev 13:213–219CrossRefGoogle Scholar
  42. 42.
    Rinaldi S, Plummer M, Biessy C, Castellsagué X, Overvad K, Krüger Kjær S, Tjønneland A, Clavel-Chapelon F, Chabbert-Buffet N, Mesrine S, Lukanova A, Kaaks R, Weikert C, Boeing H, Trichopoulou A, Lagiou P, Trichopoulos D, Palli D, Agnoli C, Tumino R, Vineis P, Panico S, Bueno-de-Mesquita B, van Kranen HJ, Peeters PH, Bakken K, Lund E, Gram IT, Rodríguez L, Bosch FX, Sánchez MJ, Dorronsoro M, Navarro C, Gurrea AB, Kjellberg L, Dillner J, Manjer J, Butt S, Khaw KT, Wareham N, Allen NE, Travis R, Romieu I, Ferrari P, Riboli E, Franceschi S (2011) Endogenous sex steroids and risk of cervical carcinoma: results from the EPIC study. Cancer Epidemiol Biomark Prev 20:2532–2540CrossRefGoogle Scholar

Copyright information

© Arányi Lajos Foundation 2016

Authors and Affiliations

  • Anna Lutkowska
    • 1
  • Andrzej Roszak
    • 2
    • 3
  • Pawel P. Jagodziński
    • 1
    Email author
  1. 1.Department of Biochemistry and Molecular BiologyPoznan University of Medical SciencesPoznanPoland
  2. 2.Department of Radiotherapy and Gynecological OncologyGreater Poland Cancer CenterPoznanPoland
  3. 3.Department of ElectroradiologyPoznan University of Medical SciencesPoznanPoland

Personalised recommendations