Advertisement

Pathology & Oncology Research

, Volume 23, Issue 2, pp 345–353 | Cite as

Expression of ADAM10, Fas, FasL and Soluble FasL in Patients with Oral Squamous Cell Carcinoma (OSCC) and their Association with Clinical-Pathological Parameters

  • José Sergio Zepeda-Nuño
  • Celia Guerrero-Velázquez
  • Susana Del Toro-Arreola
  • Natali Vega-Magaña
  • Julián Ángeles-Sánchez
  • Jesse Haramati
  • Ana L. Pereira-Suárez
  • Miriam R. Bueno-TopeteEmail author
Original Article

Abstract

ADAM10 has been implicated in the progression of various solid tumors. ADAM10 regulates the cleavage of the FasL ectodomain from the plasma membrane of different cell types, generating the soluble FasL fragment (sFasL). Currently, there are few studies in oral squamous cell carcinoma (OSCC) that correlate levels of ADAM10 and FasL in the tumor microenvironment with clinical parameters of the disease. To determine the expression of ADAM10, Fas, FasL and sFasL in patients with OSCC and its association with TNM stage. Twenty-five patients with OSCC and 25 healthy controls were included. Biopsies of tumor tissue from patients with OSCC and buccal mucosa in controls were obtained. ADAM10, Fas, and FasL were analyzed by Western blotting. sFasL was quantified by ELISA. ADAM10 and Fas decreased significantly in OSCC compared with controls. Relatedly, within the OSCC group, Fas and ADAM10 decreased in accordance with tumor disease stage; in stages I/II, as well as in tumors of smaller diameter (T1-T2), ADAM10 showed higher levels when compared to patients with T3-T4 tumors and in stage III-IV. FasL in the tumor microenvironment and serum FasL showed no significant differences between both groups. Levels of complete FasL and cleaved FasL were positively correlated in controls; this correlation is preserved in patients with tumors in early stages (I-II), but is lost in later stage (III-IV). The dysregulation of ADAM10, Fas and FasL could be useful indicators of the progression and severity of OSCC.

Keywords

Oral cancer ADAM10 sFasL Fas FasL 

References

  1. 1.
    International agency of research on cancer. Cancer mondial globocan (2012) Database: summary tables by cancer. http://globocan.iarc.fr. Accessed 12 February 2016
  2. 2.
    Fong D, Spizzo G, Gostner JM, Gastl G, Moser P, Krammel C, Gerhard S, Rasse M, Laimer K (2008) TROP2: a novel prognostic marker in squamous cell carcinoma of the oral cavity. Mod Pathol 21:186–191PubMedGoogle Scholar
  3. 3.
    Edwards DR, Handsley MM, Pennington CJ (2008) The ADAM metalloproteinases. Mol Asp Med 29:258–289CrossRefGoogle Scholar
  4. 4.
    Tousseyn T, Thathiah A, Jorissen E, Raemaekers T, Konietzko U, Reiss K, Maes E, Snellinx A, Serneels L, Nyabi O, Annaert W, Saftig P, Hartmann D, De Strooper B (2009) ADAM10, the rate-limiting protease of regulated intramembrane proteolysis of notch and other proteins, is processed by ADAMS-9, ADAMS-15, and the gamma-secretase. J Biol Chem 284:11738–11747CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Mochizuki S, Okada Y (2007) ADAMs in cancer cell proliferation and progression. Cancer Sci 98:621–628CrossRefPubMedGoogle Scholar
  6. 6.
    Jones A, Lambert D, Speight P, Whawell S (2013) ADAM 10 is over expressed in oral squamous cell carcinoma and contributes to invasive behavior through a functional association with avb6 integrin. FEBS Lett 587:3529–3534CrossRefPubMedGoogle Scholar
  7. 7.
    Ko SY, Lin SC, Wong YK, Liu CJ, Chang KW, Liu TY (2007) Increase of disintergin metalloprotease 10 (ADAM10) expression in oral squamous cell carcinoma. Cancer Lett 245:33–43CrossRefPubMedGoogle Scholar
  8. 8.
    Pruessmeyer J, Ludwig A (2009) The good, the bad and the ugly substrates for ADAM10 and ADAM17 in brain pathology, inflammation and cancer. Semin Cell Dev Biol 20:164–174CrossRefPubMedGoogle Scholar
  9. 9.
    Strasser A, Jost PJ, Nagata S (2009) The many roles of FAS receptor signaling in the immune system. Immunity 30:180–192CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Schulte M, Reiss K, Lettau M, Maretzky T, Ludwig A, Hartmann D, de Strooper B, Janssen O, Saftig P (2007) ADAM10 regulates FasL cell surface expression and modulates FasL-induced cytotoxicity and activation-induced cell death. Cell Death Differ 14:1040–1049PubMedGoogle Scholar
  11. 11.
    Kirkin V, Cahuzac N, Guardiola-Serrano F, Huault S, Lückerath K, Friedmann E, Novac N, Wels WS, Martoglio B, Hueber AO, Zörnig M (2007) The Fas ligand intracellular domain is released by ADAM10 and SPPL2a cleavage in T-cells. Cell Death Differ 14:1678–1687CrossRefPubMedGoogle Scholar
  12. 12.
    Peter ME, Hadji A, Murmann AE, Brockway S, Putzbach W, Pattanayak A, Ceppi P (2015) The role of CD95 and CD95 ligand in cancer. Cell Death Differ 22:549–559CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Pietras K, Ostman A (2010) Hallmarks of cancer: interactions with the tumor stromal. Exp Cell Res 316:1324–1331CrossRefPubMedGoogle Scholar
  14. 14.
    Gaida MM, Haag N, Günther F, Tschaharganeh DF, Schirmacher P, Friess H, Giese NA, Schmidt J, Wente MN (2010) Expression of a disintegrin and metalloprotease 10 in pancreatic carcinoma. Int J Mol Med 26:281–288PubMedGoogle Scholar
  15. 15.
    You B, Shan Y, Shi S, Li X, You Y (2015) Effects of ADAM10 upregulation on progression, migration, and prognosis of nasopharyngeal carcinoma. Cancer Sci 106:1506–1514CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Guo J, He L, Yuan P, Wang P, Lu Y, Tong F, Wang Y, Yin Y, Tian J, Sun J (2012) ADAM10 overexpression in human non-small cell lung cancer correlates with cell migration and invasion through the activation of the Notch1 signaling pathway. Oncol Rep 28:1709–1718PubMedGoogle Scholar
  17. 17.
    Shaker M, Yokoyama Y, Mori S, Tsujimoto M, Kawaguchi N, Kiyono T, Nakano T, Matsuura N (2011) Aberrant expression of disintegrin-metalloprotease proteins in the formation and progression of uterine cervical cancer. Pathobiology 78:149–161CrossRefPubMedGoogle Scholar
  18. 18.
    Saftig P, Reiss K (2011) The "a disintegrin and metalloproteases" ADAM10 and ADAM17: novel drug targets with therapeutic potential? Eur J Cell Biol 90:527–535Google Scholar
  19. 19.
    Weber S, Niessen MT, Prox J, Lüllmann-Rauch R, Schmitz A, Schwanbeck R, Blobel CP, Jorissen E, de Strooper B, Niessen CM, Saftig P (2011) The disintegrin/metalloproteinase Adam10 is essential for epidermal integrity and Notch-mediated signaling. Development 138:495–505CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Ebsen H, Schröder A, Kabelitz D, Janssen O (2013) Differential surface expression of ADAM10 and ADAM17 on human T lymphocytes and tumor cells. PLoS One 8:e76853CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Pabois A, Devallière J, Quillard T, Coulon F, Gérard N, Laboisse C, Toquet C, Charreau B (2014) The disintegrin and metalloproteinase ADAM10 mediates a canonical notch-dependent regulation of IL-6 through Dll4 in human endothelial cells. Biochem Pharmacol 91:510–521CrossRefPubMedGoogle Scholar
  22. 22.
    Zhuang J, Wei Q, Lin Z, Zhou C (2015) Effects of ADAM10 deletion on notch-1 signaling pathway and neuronal maintenance in adult mouse brain. Gene 555:150–158CrossRefPubMedGoogle Scholar
  23. 23.
    Scholz F, Schulte A, Adamski F, Hundhausen C, Mittag J, Schwarz A, Kruse ML, Proksch E, Ludwig A (2007) Constitutive expression and regulated release of the transmembrane chemokine CXCL16 in human and murine skin. J Invest Dermatol 127:1444–1455CrossRefPubMedGoogle Scholar
  24. 24.
    Abel S, Hundhausen C, Mentlein R, Schulte A, Berkhout TA, Broadway N, Hartmann D, Sedlacek R, Dietrich S, Muetze B, Schuster B, Kallen KJ, Saftig P, Rose-John S, Ludwig A (2004) The transmembrane CXC-chemokine ligand 16 is induced by IFN-gamma and TNF-alpha and shed by the activity of the disintegrin-like metalloproteinase ADAM10. J Immunol 172:6362–6372CrossRefPubMedGoogle Scholar
  25. 25.
    Gregory MS, Hackett CG, Abernathy EF, Lee KS, Saff RR, Hohlbaum AM, Moody KS, Hobson MW, Jones A, Kolovou P, Karray S, Giani A, John SW, Chen DF, Marshak-Rothstein A, Ksander BR (2011) Opposing roles for membrane bound and soluble Fas ligand in glaucoma-associated retinal ganglion cell death. PLoS One 6:e17659Google Scholar
  26. 26.
    Wisniewski P, Ellert-Miklaszewska A, Kwiatkowska A, Kaminska B (2010) Non-apoptotic Fas signaling regulates invasiveness of glioma cells and modulates MMP-2 activity via NFkappaB-TIMP-2 pathway. Cell Signal 22:212–220CrossRefPubMedGoogle Scholar
  27. 27.
    Hoffmann TK, Dworacki G, Tsukihiro T, Meidenbauer N, Gooding W, Johnson JT, Whiteside TL (2002) Spontaneous apoptosis of circulating T lymphocytes in patients with head and neck cancer and its clinical importance. Clin Cancer Res 8:2553–2562PubMedGoogle Scholar
  28. 28.
    Jabłońska E, Kiersnowska-Rogowska B, Rogowski F, Parfieńczyk A, Puzewska W, Bukin M (2005) Soluble form of TRAIL, Fas and FasL in the serum of patients with B-CLL. Rocz Akad Med Bialymst 50:204–207PubMedGoogle Scholar
  29. 29.
    Askenasy N, Yolcu ES, Yaniv I, Shirwan H (2005) Induction of tolerance using Fas ligand: a double-edged immunomodulator. Blood 105:1396–1404CrossRefPubMedGoogle Scholar
  30. 30.
    Mogi M, Fukuo K, Yang J, Suhara T, Ogihara T (2001) Hypoxia stimulates release of the soluble form of fas ligand that inhibits endothelial cell apoptosis. Lab Investig 81:177–184CrossRefPubMedGoogle Scholar
  31. 31.
    Fang L, Sun L, FF H, Chen QE (2013) Effects of FasL expression in oral squamous cell cancer. Asian Pac J Cancer Prev 14:281–285CrossRefPubMedGoogle Scholar
  32. 32.
    Das SN, Khare P, Singh MK, Sharma SC (2011) Fas receptor (CD95) & Fas ligand (CD178) expression in patients with tobacco-related intraoral squamous cell carcinoma. Indian J Med Res 134:54–60PubMedPubMedCentralGoogle Scholar
  33. 33.
    Lee SH, Jang JJ, Lee JY, Kim SY, Park WS, Shin MS, Dong SM, Na EY, Kim KM, Kim CS, Kim SH, Yoo NJ (1998) Fas ligand is expressed in normal skin and in some cutaneous malignancies. Br J Dermatol 139:186–191CrossRefPubMedGoogle Scholar

Copyright information

© Arányi Lajos Foundation 2016

Authors and Affiliations

  • José Sergio Zepeda-Nuño
    • 1
  • Celia Guerrero-Velázquez
    • 2
  • Susana Del Toro-Arreola
    • 3
  • Natali Vega-Magaña
    • 3
  • Julián Ángeles-Sánchez
    • 4
  • Jesse Haramati
    • 5
  • Ana L. Pereira-Suárez
    • 6
  • Miriam R. Bueno-Topete
    • 3
    Email author
  1. 1.Laboratorio de Patología, Departamento de Microbiología y Patología, Centro Universitario de Ciencias de la SaludUniversidad de GuadalajaraGuadalajaraMéxico
  2. 2.Instituto de Investigación en Odontología, Departamento de Clínicas Odontológicas Integrales, Centro Universitario de Ciencias de la SaludUniversidad de GuadalajaraGuadalajaraMéxico
  3. 3.Instituto de Investigación en Enfermedades Crónico Degenerativas, Departamento de Biología Molecular y Genómica, Centro Universitario de Ciencias de la SaludUniversidad de GuadalajaraGuadalajaraMéxico
  4. 4.Clínica de Tumores de Cabeza y CuelloInstituto Jalisciense de CancerologíaGuadalajaraMéxico
  5. 5.Laboratorio de Inmunología, Departamento de Biología Celular y Molecular, Centro Universitario de Ciencias Biológicas y AgropecuariasUniversidad de GuadalajaraGuadalajaraMéxico
  6. 6.Laboratorio de Inmunología, Departamento de Fisiología, Centro Universitario de Ciencias de la SaludUniversidad de GuadalajaraGuadalajaraMéxico

Personalised recommendations