Advertisement

Pathology & Oncology Research

, Volume 23, Issue 2, pp 253–264 | Cite as

The Expression of Checkpoint and DNA Repair Genes in Head and Neck Cancer as Possible Predictive Factors

  • Orsolya RuszEmail author
  • Margit Pál
  • Éva Szilágyi
  • László Rovó
  • Zoltán Varga
  • Bernadett Tomisa
  • Gabriella Fábián
  • Levente Kovács
  • Olga Nagy
  • Petra Mózes
  • Zita Reisz
  • László Tiszlavicz
  • Péter Deák
  • Zsuzsanna Kahán
Original Article

Abstract

DNA damage response failure may influence the efficacy of DNA-damaging treatments. We determined the expression of 16 genes involved in distinct DNA damage response pathways, in association with the response to standard therapy. Twenty patients with locoregionally advanced, squamous cell head and neck carcinoma were enrolled. The treatment included induction chemotherapy (iChT) with docetaxel, cisplatin and 5-fluorouracil followed by concomitant chemoradiotherapy (ChRT) or radiotherapy (RT) alone. The volumetric metabolic therapeutic response was determined by [18F]FDG-PET/CT. In the tumor and matched normal tissues collected before treatment, the gene expressions were examined via the quantitative real-time polymerase chain reaction (qRT-PCR). The down-regulation of TP53 was apparently associated with a poor response to iChT, its up-regulation with complete regression in 2 cases. 7 cases with down-regulated REV1 expression showed complete regression after ChRT/RT, while 1 case with REV1 overexpression was resistant to RT. The overexpression of WRN was an independent predictor of tumor relapse. Our results suggest that an altered expression of REV1 predicts sensitivity to RT, while WRN overexpression is an unfavorable prognostic factor.

Keywords

Head and neck cancer Chemosensitivity Radiosensitivity DNA damage response Gene expression 

Notes

Acknowledgments

The authors are grateful for the advice of Ágnes Zvara and Ferenc Somogyvári on qRT-PCR methodology and for the advice of Krisztina Boda on statistical analysis.

References

  1. 1.
    Ferlay J, Steliarova-Foucher E, Lortet-Tieulent J, et al. (2013) Cancer incidence and mortality patterns in Europe: estimates for 40 countries in 2012. Eur J Cancer 49:1374–1403. doi: 10.1016/j.ejca.2012.12.027 CrossRefPubMedGoogle Scholar
  2. 2.
    Posner MR, Hershock DM, Blajman CR, et al. (2007) Cisplatin and fluorouracil alone or with docetaxel in head and neck cancer. N Engl J Med 357:1705–1715. doi: 10.1056/NEJMoa070956 CrossRefPubMedGoogle Scholar
  3. 3.
    Vermorken JB, Remenar E, van Herpen C, et al. (2007) Cisplatin, fluorouracil, and docetaxel in unresectable head and neck cancer. N Engl J Med 357:1695–1704. doi: 10.1056/NEJMoa071028 CrossRefPubMedGoogle Scholar
  4. 4.
    Hitt R, Grau JJ, López-Pousa A, et al. (2014) A randomized phase III trial comparing induction chemotherapy followed by chemoradiotherapy versus chemoradiotherapy alone as treatment of unresectable head and neck cancer. Ann Oncol 25:216–225. doi: 10.1093/annonc/mdt461 CrossRefPubMedGoogle Scholar
  5. 5.
    Helleday T, Petermann E, Lundin C, Hodgson B, Sharma RA (2008) DNA repair pathways as targets for cancer therapy. Nat Rev Cancer 8:193–204. doi: 10.1038/nrc2342 CrossRefPubMedGoogle Scholar
  6. 6.
    Curtin NJ (2012) DNA repair dysregulation from cancer driver to therapeutic target. Nat Rev Cancer 12:801–817. doi: 10.1038/nrc3399 CrossRefPubMedGoogle Scholar
  7. 7.
    Juhasz S, Balogh D, Hajdu I, et al. (2012) Characterization of human Spartan/C1orf124, an ubiquitin-PCNA interacting regulator of DNA damage tolerance. Nucleic Acids Res 40:10795–10808. doi: 10.1093/nar/gks850 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Lange SS, Takata K, Wood RD (2011) DNA polymerases and cancer. Nat Rev Cancer 11:96–110. doi: 10.1038/nrc2998 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Kitano K (2014) Structural mechanisms of human RecQ helicases WRN and BLM. Front Genet 5:366. doi: 10.3389/fgene.2014.00366 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Parrilla-Castellar ER, Arlander SJH, Karnitz L (2004) Dial 9–1-1 for DNA damage: The Rad9-Hus1-Rad1 (9–1–1) clamp complex. DNA Repair (Amst) 3:1009–1014. doi: 10.1016/j.dnarep.2004.03.032 CrossRefGoogle Scholar
  11. 11.
    Niida H, Nakanishi M (2006) DNA damage checkpoints in mammals. Mutagenesis 21:3–9. doi: 10.1093/mutage/gei063 CrossRefPubMedGoogle Scholar
  12. 12.
    McGrogan BT, Gilmartin B, Carney DN, McCann A (2008) Taxanes, microtubules and chemoresistant breast cancer. Biochim Biophys Acta 1785:96–132. doi: 10.1016/j.bbcan.2007.10.004 PubMedGoogle Scholar
  13. 13.
    Miller AB, Hoogstraten B, Staquet M, Winkler A (1981) Reporting results of cancer treatment. Cancer 47:207–214CrossRefPubMedGoogle Scholar
  14. 14.
    Wiggenraad R, Mast M, van Santvoort J, Hoogendoorn M, Struikmans H (2005) ConPas: a 3-D conformal parotid gland-sparing irradiation technique for bilateral neck treatment as an alternative to IMRT. Strahlenther Onkol 181:673–682. doi: 10.1007/s00066-005-1413-8 CrossRefPubMedGoogle Scholar
  15. 15.
    Nikolényi A, Uhercsák G, Csenki M, et al. (2012) Tumour topoisomerase II alpha protein expression and outcome after adjuvant dose-dense anthracycline-based chemotherapy. Pathol Oncol Res 18:61–68. doi: 10.1007/s12253-011-9417-4 CrossRefPubMedGoogle Scholar
  16. 16.
    Rozen S, Skaletsky H (2000) Primer3 on the WWW for general users and for biologist programmers. Methods Mol Biol 132:365–386PubMedGoogle Scholar
  17. 17.
    Lallemant B, Evrard A, Combescure C, et al. (2009) Reference gene selection for head and neck squamous cell carcinoma gene expression studies. BMC Mol Biol 10:78. doi: 10.1186/1471-2199-10-78 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Sharma S, Canman CE (2012) REV1 and DNA polymerase zeta in DNA interstrand crosslink repair. Environ Mol Mutagen 53:725–740. doi: 10.1002/em.21736 CrossRefPubMedGoogle Scholar
  19. 19.
    Lin X, Okuda T, Trang J, Howell SB (2006) Human REV1 modulates the cytotoxicity and mutagenicity of cisplatin in human ovarian carcinoma cells. Mol Pharmacol 69:1748–1754. doi: 10.1124/mol.105.020446 CrossRefPubMedGoogle Scholar
  20. 20.
    Xie K, Doles J, Hemann MT, Walker GC (2010) Error-prone translesion synthesis mediates acquired chemoresistance. Proc Natl Acad Sci U S A 107:20792–20797. doi: 10.1073/pnas.1011412107 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Okada T, Sonoda E, Yoshimura M, et al. (2005) Multiple roles of vertebrate REV genes in DNA repair and recombination. Mol Cell Biol 25:6103–6111. doi: 10.1128/MCB.25.14.6103-6111.2005 CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Moeller BJ, Yordy JS, Williams MD, et al. (2011) DNA repair biomarker profiling of head and neck cancer: Ku80 expression predicts locoregional failure and death following radiotherapy. Clin Cancer Res 17:2035–2043. doi: 10.1158/1078-0432.CCR-10-2641 CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Lee SY, Park HR, Cho NH, et al. (2013) Identifying genes related to radiation resistance in oral squamous cell carcinoma cell lines. Int J Oral Maxillofac Surg 42:169–176. doi: 10.1016/j.ijom.2012.10.022 CrossRefPubMedGoogle Scholar
  24. 24.
    Horiuchi C, Taguchi T, Yoshida T, et al. (2008) Early assessment of clinical response to concurrent chemoradiotherapy in head and neck carcinoma using fluoro-2-deoxy-d-glucose positron emission tomography. Auris Nasus Larynx 35:103–108. doi: 10.1016/j.anl.2007.05.003 CrossRefPubMedGoogle Scholar
  25. 25.
    Won HS, Lee YS, Jeon EK, et al. (2014) Clinical outcome of induction chemotherapy in locally advanced head and neck squamous cell carcinoma. Anticancer Res 34:5709–5714PubMedGoogle Scholar
  26. 26.
    Argiris A (2005) Induction chemotherapy for head and neck cancer: will history repeat itself? J Natl Compr Cancer Netw 3:393–403Google Scholar
  27. 27.
    Bhatia KSS, King AD, Yu K-H, et al. (2010) Does primary tumour volumetry performed early in the course of definitive concomitant chemoradiotherapy for head and neck squamous cell carcinoma improve prediction of primary site outcome? Br J Radiol 83:964–970. doi: 10.1259/bjr/27631720 CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Hoebers FJP, Pameijer FA, de Bois J, et al. (2008) Prognostic value of primary tumor volume after concurrent chemoradiation with daily low-dose cisplatin for advanced-stage head and neck carcinoma. Head Neck 30:1216–1223. doi: 10.1002/hed.20865 CrossRefPubMedGoogle Scholar
  29. 29.
    Gudkov AV, Komarova EA (2003) The role of p53 in determining sensitivity to radiotherapy. Nat Rev Cancer 3:117–129. doi: 10.1038/nrc992 CrossRefPubMedGoogle Scholar
  30. 30.
    Shiga H, Heath EI, Rasmussen et al (1999) Prognostic value of p53, glutathione S-transferase pi, and thymidylate synthase for neoadjuvant cisplatin-based chemotherapy in head and neck cancer. Clin Cancer Res 5:4097–4104Google Scholar
  31. 31.
    Falette N, Paperin MP, Treilleux I, et al. (1998) Prognostic value of P53 gene mutations in a large series of node-negative breast cancer patients. Cancer Res 58:1451–1455PubMedGoogle Scholar
  32. 32.
    Cabelguenne A, Blons H, de Waziers I, et al. (2000) p53 alterations predict tumor response to neoadjuvant chemotherapy in head and neck squamous cell carcinoma: a prospective series. J Clin Oncol 18:1465–1473CrossRefPubMedGoogle Scholar
  33. 33.
    Santana P, Peña LA, Haimovitz-Friedman A, et al. (1996) Acid sphingomyelinase-deficient human lymphoblasts and mice are defective in radiation-induced apoptosis. Cell 86:189–199CrossRefPubMedGoogle Scholar
  34. 34.
    Chmura SJ, Mauceri HJ, Advani S, et al. (1997) Decreasing the apoptotic threshold of tumor cells through protein kinase C inhibition and sphingomyelinase activation increases tumor killing by ionizing radiation. Cancer Res 57:4340–4347PubMedGoogle Scholar
  35. 35.
    Hendry JH, West CM (1997) Apoptosis and mitotic cell death: their relative contributions to normal-tissue and tumour radiation response. Int J Radiat Biol 71:709–719CrossRefPubMedGoogle Scholar
  36. 36.
    Jung M, Notario V, Dritschilo A (1992) Mutations in the p53 gene in radiation-sensitive and -resistant human squamous carcinoma cells. Cancer Res 52:6390–6393PubMedGoogle Scholar
  37. 37.
    DiBiase SJ, Guan J, Curran WJ, Iliakis G (1999) Repair of DNA double-strand breaks and radiosensitivity to killing in an isogenic group of p53 mutant cell lines. Int J Radiat Oncol Biol Phys 45:743–751CrossRefPubMedGoogle Scholar
  38. 38.
    Bunz F, Hwang PM, Torrance C, et al. (1999) Disruption of p53 in human cancer cells alters the responses to therapeutic agents. J Clin Invest 104:263–269. doi: 10.1172/JCI6863 CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Levine AJ (2009) The common mechanisms of transformation by the small DNA tumor viruses: the inactivation of tumor suppressor gene products: p53. Virology 384:285–293. doi: 10.1016/j.virol.2008.09.034
  40. 40.
    Chau NG, Rabinowits G, Haddad RI (2014) Human papillomavirus-associated oropharynx cancer (HPV-OPC): treatment options. Curr Treat Options in Oncol 15:595–610. doi: 10.1007/s11864-014-0309-1
  41. 41.
    Arai A, Chano T, Futami K, et al. (2011) RECQL1 and WRN proteins are potential therapeutic targets in head and neck squamous cell carcinoma. Cancer Res 71:4598–4607. doi: 10.1158/0008-5472.CAN-11-0320 CrossRefPubMedGoogle Scholar
  42. 42.
    Wang L, Xie L, Wang J, Shen J, Liu B (2013) Correlation between the methylation of SULF2 and WRN promoter and the irinotecan chemosensitivity in gastric cancer. BMC Gastroenterol 13:173. doi: 10.1186/1471-230X-13-173 CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Agrelo R, Cheng W-H, Setien F, et al. (2006) Epigenetic inactivation of the premature aging Werner syndrome gene in human cancer. Proc Natl Acad Sci U S A 103:8822–8827. doi: 10.1073/pnas.0600645103 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Arányi Lajos Foundation 2016

Authors and Affiliations

  • Orsolya Rusz
    • 1
    Email author
  • Margit Pál
    • 2
  • Éva Szilágyi
    • 1
  • László Rovó
    • 3
  • Zoltán Varga
    • 1
  • Bernadett Tomisa
    • 2
  • Gabriella Fábián
    • 1
  • Levente Kovács
    • 2
  • Olga Nagy
    • 2
  • Petra Mózes
    • 4
  • Zita Reisz
    • 5
  • László Tiszlavicz
    • 5
  • Péter Deák
    • 2
  • Zsuzsanna Kahán
    • 1
  1. 1.Department of OncotherapyUniversity of SzegedSzegedHungary
  2. 2.Institute of Biochemistry, Biological Research CenterHungarian Academy of SciencesSzegedHungary
  3. 3.Department of Oto-Rhino-Laryngology and Head-Neck SurgeryUniversity of SzegedSzegedHungary
  4. 4.Department of Radiation Oncology, Klinikum rechts der IsarTechnische UniversitätMunichGermany
  5. 5.Department of PathologyUniversity of SzegedSzegedHungary

Personalised recommendations