Skip to main content

Evaluation of Histological and non-Invasive Methods for the Detection of Liver Fibrosis: The Values of Histological and Digital Morphometric Analysis, Liver Stiffness Measurement and APRI Score


Prognosis and treatment of liver diseases mainly depend on the precise evaluation of the fibrosis. Comparisons were made between the results of Metavir fibrosis scores and digital morphometric analyses (DMA), liver stiffness (LS) values and aminotransferase-platelet ratio (APRI) scores, respectively. Liver biopsy specimens stained with Sirius red and analysed by morphometry, LS and APRI measurements were taken from 96 patients with chronic liver diseases (56 cases of viral hepatitis, 22 cases of autoimmune- and 18 of mixed origin). The strongest correlation was observed between Metavir score and DMA (r = 0.75 p < 0.05), followed in decreasing order by LS and Metavir (r = 0.61), LS and DMA (r = 0.47) LS and APRI (r = 0.35) and Metavir and APRI (r = 0.24), respectively. DMA is a helpful additional tool for the histopathological evaluation of fibrosis, even when the sample size is small and especially in case of advanced fibrosis. The non-invasive methods showed good correlation with the histopathological methods; LS proved to be more accurate than APRI. The stronger correlation between LS values and Metavir scores, as well as the results of DMA in case of appropriate sample size were remarkable.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4


  1. Bedossa P, Dargere D, Paradis V (2003) Sampling variability of liver fibrosis in chronic hepatitis C. Hepatology 38:1449–1457

    Article  PubMed  Google Scholar 

  2. Afdhal NH (2004) Biopsy or biomarkers: is there a gold standard for diagnosis of liver fibrosis? Clin Chem 50:1299–1300

    Article  CAS  PubMed  Google Scholar 

  3. Desmet VJ, Gerber M, Hoofnagle JH et al (1994) Classification of chronic hepatitis: diagnosis, grading and staging. Hepatology 19:1513–1520

    Article  CAS  PubMed  Google Scholar 

  4. Germani G, Burroughs AK, Duillon AP (2010) The relationship between liver disease stage and liver fibrosis: a tangled web. Histopathology 57:773–784

    Article  PubMed  Google Scholar 

  5. Huang Y, de Boer WB, Adams LA et al (2014) Image analysis of liver biopsy samples measures fibrosis and predicts clinical outcome. J Hepatol 61:22–27

    Article  PubMed  Google Scholar 

  6. Hall AR, Tsochatzis E, Morris R et al (2013) Sample size requirement for digital image analysis of collagen prportionate area in cirrhotic livers. Histopathology 62:421–430

    Article  PubMed  Google Scholar 

  7. Isgro G, Calvaruso V, Andreana L et al (2013) The relationship between transient elastograpy and histological collagen proportionate area for assessing fibrosis in chronic viral hepatitis. J Gastroenterol 48:921–929

    Article  PubMed  Google Scholar 

  8. Huang Y, de Boer WB, Adams LA et al (2013) Image analysis of liver collagen using sirius red is more accurate and correlates better with serum fibrosis markers than trichrome. Liver Int 338:1249–1256

    Article  Google Scholar 

  9. Poynard T, Bedossa P, Opolon P (1997) Natural history of liver fibrosis progression in patient with chronic hepatitis C. The OBSVIRC, METAVIR, CLINVIR and DOSVIRCgroups. Lancet 349:825–832

    Article  CAS  PubMed  Google Scholar 

  10. Corpechot C, El Naggar A, Poujol-Robert A et al (2006) Assessment of biliary fibrosis by transient elastography in patients with PBC and PSC. Hepatology 43:1118–1124

    Article  PubMed  Google Scholar 

  11. Brunt M, Janney CG, Di Bisceglie AM et al (1999) Nonacoholic steatohepatitis: a proposal for grading and staging the histological lesions. Am J Gastroenterol 94:2467–2474

    Article  CAS  PubMed  Google Scholar 

  12. Ishak K, Baptista L, Bianchi L et al (1995) Histological grading and staging of chronic hepatitis. J Hepatol 22:696–699

    Article  CAS  PubMed  Google Scholar 

  13. Wai CT, Greenson JK, Fontana RJ (2003) A simple noninvasive index can predict both significant fibrosis and cirrhosis in patient with chronic hepatitis C. Hepatology 38:518–526

    Article  PubMed  Google Scholar 

  14. Dahab GM, Kheriza MM, El-Beltagi HM et al (2004) Digital quatification of fibrosis in liver biopsy sections: description of a new method by photoshop software. J Gastroenterol Hepatol 19:78–85

    Article  PubMed  Google Scholar 

  15. Goodman ZD, Stoddard AM, Bonkowsky HL et al (2009) Fibrosis progression in chronic hepatitis C: morphometric image analysis in the HALT-C trial. Hepatology 50:1738–1749

    Article  PubMed Central  PubMed  Google Scholar 

  16. Huss S, Schmitz J, Goltz D et al (2010) Development and evaluation of an open source Delphi-based software for morphometric quantification of liver fibrosis. Fibrogenesis Tissue Repair 3:10

    Article  PubMed Central  PubMed  Google Scholar 

  17. Wright M, Thursz M, Pullen R et al (2003) Quantitative versus morphological assessment of liver fibrosis: semi-quantitative scores are more robust than digital image fibrosis area estimation. Liver Int 23:28–34

    Article  PubMed  Google Scholar 

  18. Maduli E, Andorno S, Rigamonti C et al (2002) Evaluation of liver fibrosis in chronic hepatits C with a computer-assisted morphometric method. Ann Ital Med Int 17:242–247

    PubMed  Google Scholar 

  19. Arima M, Terao H, Kashima K et al (2004) Regression of liver fibrosis in cases of chronic liver disease type C: quantitative evaluation by using computed image analysis. Intern Med 43:902–910

    Article  PubMed  Google Scholar 

  20. Friedenberg MA, Miller L, Chung CY et al (2005) Simplified method of hepatic fibrosis quantification: design of a new morphometric analysis application. Liver Int 25:1156–1161

    Article  PubMed  Google Scholar 

  21. O’Brien MJ, Keating NM, Elderiny S et al (2000) An assessment of digital image analysis to measure fibrosis in liver biopsy specimens of patients with chronic hepatitis C. Am J Clin Pathol 114:712–718

    Article  PubMed  Google Scholar 

  22. Pilette C, Rousselet C, Bedossa P et al (1998) Histopathological evaluation of liver fibrosis: quantitative image analysis vs semi-quantitative scores. Comparison with serum markers J Hepatol 28:439–446

    CAS  Google Scholar 

  23. Ziol M, Kettaneh A, Ganne-Carrié N et al (2009) Relationships between fibrosis amounts assessed by morphometry and liver stiffness measurements in chronic hepatitis or steatohepatitis. Eur J Gastroenterol Hepatol 21:1261–1268

    Article  PubMed  Google Scholar 

  24. Lazzarini AL, Levine RA, Ploutz-Synder J et al (2005) Advances in digital quantification technique enhance discrimination between mild and advanced liver fibrosis in chronic hepatitis C. Liver Int 25:1142–1149

    Article  PubMed  Google Scholar 

  25. Cho HJ, Seo YS, Lee KG et al (2011) Serum aminotransferase levels instead of etiology affects the accuracy of transient elastography in chronic viral hepatitis patient. Gastroenterol Hepatol 26:492–500

    Article  CAS  Google Scholar 

  26. Yasuda M, Shimizu I, Shiba M et al (1999) Supressive efects of estradiol on dimetylnitrosamine-induced fibrosis of the liver in rats. Hepatology 29:719–727

    Article  CAS  PubMed  Google Scholar 

  27. Fraquelli M, Rigamonti C, Casazza G et al (2007) Reproducibility of transient elastograpy in the evaluation of liver fibrosis in patient with chronic liver disease. Gut 56:968–973

    Article  PubMed Central  PubMed  Google Scholar 

  28. Arena U, Vizutti F, Abraldes JG et al (2008) Reliability of transient elastography for the diagnosis of advanced fibrosis in chronic hepatits C. Gut 57:1288–1293

    Article  CAS  PubMed  Google Scholar 

  29. Tapper EB, Cohen EB, Afdhal N et al (2012) Levels of alanine aminotransferase confound use of transient elastography to diagnose fibrosis in patients with chronic HCV infection. Clin Gastroenterol Hepatol 10:932–937

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. McCormick SE, Goodman ZD, Maydonovitch CC et al (1996) Evaluation of liver histology ALT elevation and HCV RNA titer in patients with chronic hepatitis C. Am J Gastroenterol 91:1516–1522

    CAS  PubMed  Google Scholar 

  31. Poynard T, Ngo Y, Perazzo H et al (2011) Prognostic value of liver fibrosis biomarkers. A meta-analysis. Gastroenterol Hepatol 7:445–454

    Google Scholar 

Download references


Authors would like to thank Mrs. Elvira Kálé Rigóné for the English proofreading and Mrs. Tordainé Szabó Hedvig for her technical assistance.

Financial Support

This study was supported by grants OTKA K108548 by the Hungarian National Scientific Research Fund.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Zsuzsa Schaff.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Halász, T., Horváth, G., Kiss, A. et al. Evaluation of Histological and non-Invasive Methods for the Detection of Liver Fibrosis: The Values of Histological and Digital Morphometric Analysis, Liver Stiffness Measurement and APRI Score. Pathol. Oncol. Res. 22, 1–6 (2016).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • Liver fibrosis
  • Liver stiffness
  • Digital morphometric analysis
  • Liver biopsy