Skip to main content

Advertisement

Log in

Study on the Association Between miRNA-202 Expression and Drug Sensitivity in Multiple Myeloma Cells

  • Original Article
  • Published:
Pathology & Oncology Research

Abstract

An increasing amount of experimental evidence has shown that miRNAs play a causal role in hematologic tumorigenesis. In this study, we characterized the role of miR-202 in multiple myeloma (MM) drug sensitivity. The potential binding site of miR-202 and B cell-activating factor (BAFF) was confirmed by luciferase reporter assay. MM cells were transfected with miR-202 mimics and inhibitor. Cells growth was measured by WST-1 cell proliferation assay and Annexin V-FLUOS apoptosis assay. BAFF and miR-202 mRNA levels were measured by real-time PCR. Meanwhile, BAFF, Bcl-2 family survival proteins and MAPK pathway proteins were measured by Western blot. It was found that miR-202 was functioned as a modulator of BAFF expression. miR-202 over-expression sensitized MM cells to bortezomib (Bort) but less to Thalidomide (Thal) and dexamethasone (Dex). miR-202 mimics in combination with Bort inhibited MM cell survival more effectively as compared with Bort treatment alone. Our study also provided experimental evidence that JNK/SAPK signaling pathway was involved in the regulatory effect of miR-202 on drug resistance of MM cells. These results suggest that the regulatory mechanism of miR-202 expression may be a promising target for fine-tuning anti-myeloma therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Cömert M, Güneş AE, Sahin F, Saydam G (2013) Quality of Life and Supportive Care in Multiple Myeloma. Turk J Haematol 30(3):234–246

    Article  PubMed  PubMed Central  Google Scholar 

  2. Andrews SW, Kabrah S, May JE, Donaldson C, Morse HR (2013) Multiple myeloma: the bone marrow microenvironment and its relation to treatment. Br J Biomed Sci 70(3):110–120

    Article  CAS  PubMed  Google Scholar 

  3. Terpos E, Christoulas D (2013) Effects of proteasome inhibitors on bone cancer. Bonekey Rep 2:395

    Article  PubMed  PubMed Central  Google Scholar 

  4. Zheng Y, Cai Z, Wang S, Zhang X, Qian J, Hong S, Li H, Wang M, Yang J, Yi Q (2009) Macrophages are an abundant component of myeloma microenvironment and protect myeloma cells from chemotherapy drug-induced apoptosis. Blood 114(17):3625–3628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Fuchs O (2013) Targeting of NF-kappaB signaling pathway, other signaling pathways and epigenetics in therapy of multiple myeloma. Cardiovasc Hematol Disord Drug Targets 13(1):16–34

    Article  CAS  PubMed  Google Scholar 

  6. Calin GA, Croce CM (2006) MicroRNA signatures in human cancers. Nat Rev Cancer 6(11):857–866

    Article  CAS  PubMed  Google Scholar 

  7. Kong YW, Ferland-McCollough D, Jackson TJ, Jackson TJ, Bushell M (2012) microRNAs in cancer management. Lancet Oncol 13(6):e249–e258

    Article  CAS  PubMed  Google Scholar 

  8. Corsini LR, Bronte G, Terrasi M, Amodeo V, Fanale D, Fiorentino E, Cicero G, Bazan V, Russo A (2012) The role of microRNAs in cancer: diagnostic and prognostic biomarkers and targets of therapies. Expert Opin Ther Targets 16(Suppl 2):S103–S109

    Article  CAS  PubMed  Google Scholar 

  9. Pichiorri F, Suh SS, Ladetto M, Kuehl M, Palumbo T, Drandi D, Taccioli C, Zanesi N, Alder H, Hagan JP, Munker R, Volinia S, Boccadoro M, Garzon R, Palumbo A, Aqeilan RI, Croce CM (2008) MicroRNAs regulate critical genes associated with multiple myeloma pathogenesis. Proc Natl Acad Sci U S A 105(35):12885–12890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Corthals SL, Sun SM, Kuiper R, de Knegt Y, Broyl A, van der Holt B, Beverloo HB, Peeters JK, el Jarari L, Lokhorst HM, Zweegman S, Jongen-Lavrencic M, Sonneveld P (2011) MicroRNA signatures characterize multiple myeloma patients. Leukemia 25(11):1784–1789

    Article  CAS  PubMed  Google Scholar 

  11. Gao SM, Xing CY, Chen CQ, Lin SS, Dong PH, Yu FJ (2011) miR-15a and miR-16-1 inhibit the proliferation of leukemic cells by down-regulating WT1 protein level. J Exp Clin Cancer Res 30:110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hao M, Zhang L, An G, Meng H, Han Y, Xie Z, Xu Y, Li C, Yu Z, Chang H, Qiu L (2011) Bone marrow stromal cells protect myeloma cells from bortezomib induced apoptosis by suppressing microRNA-15a expression. Leuk Lymphoma 52(9):1787–1794

    Article  CAS  PubMed  Google Scholar 

  13. Fisher RI, Bernstein SH, Kahl BS, Djulbegovic B, Robertson MJ, de Vos S, Epner E, Krishnan A, Leonard JP, Lonial S, Stadtmauer EA, O’Connor OA, Shi H, Boral AL, Goy A (2006) Multicenter phase II study of bortezomib in patients with relapsed or refractory mantle cell lymphoma. J Clin Oncol 24:4867–4874

    Article  PubMed  Google Scholar 

  14. Xu G, Shen XJ, Pu J, Chu SP, Wang XD, Wu XH, Sun CJ, Zhang X, Zhu BL, Ju SQ (2012) BLyS expression and JNK activation may form a feedback loop to promote survival and proliferation of multiple myeloma cells. Cytokine 60(2):505–513

    Article  CAS  PubMed  Google Scholar 

  15. Rajkumar SV (2012) Multiple myeloma: 2012 update on diagnosis, risk-stratification, and management. Am J Hematol 87(1):78–88

    Article  PubMed  PubMed Central  Google Scholar 

  16. Fonseca R, Monge J, Dimopoulos MA (2014) Staging and prognostication of multiple myeloma. Expert Rev Hematol 7(1):21–31

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Fragioudaki M, Boula A, Tsirakis G, Psarakis F, Spanoudakis M, Papadakis IS, Pappa CA, Alexandrakis MG (2012) B cell-activating factor: Its clinical significance in multiple myeloma patients. Ann Hematol 91(9):1413–1418

    Article  CAS  PubMed  Google Scholar 

  18. Fragioudaki M, Tsirakis G, Pappa CA, Aristeidou I, Tsioutis C, Alegakis A, Kyriakou DS, Stathopoulos EN, Alexandrakis MG (2012) Serum baff levels are related to angiogenesis and prognosis in patients with multiple myeloma. Leuk Res 36(8):1004–1008

    Article  CAS  PubMed  Google Scholar 

  19. Jiang P, Yueguo W, Huiming H, Hongxiang Y, Mei W, Ju S (2009) B-Lymphocyte stimulator: a new biomarker for multiple myeloma. Eur J Haematol 82(4):267–276

    Article  PubMed  Google Scholar 

  20. Ju S, Wang Y, Ni H, Wang X, Jiang P, Kong X, Zhong R (2009) Correlation of expression levels of BLyS and its receptors with multiple myeloma. Clin Biochem 42(4–5):387–399

    Article  CAS  PubMed  Google Scholar 

  21. Meads MB, Hazlehurst LA, Dalton WS (2008) The bone marrow microenvironment as a tumor sanctuary and contributor to drug resistance. Clin Cancer Res 14(9):2519–2526

    Article  CAS  PubMed  Google Scholar 

  22. Podar K, Chauhan D, Anderson KC (2009) Bone marrow microenvironment and the identification of new targets for myeloma therapy. Leukemia 23(1):10–24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Yu J, Qiu X, Shen X, Shi W, Wu X, Gu G, Zhu B, Ju S (2014) miR-202 expression concentration and its clinical significance in the serum of multiple myelomapatients. Ann Clin Biochem 51:543–549

    Article  CAS  PubMed  Google Scholar 

  24. Tai YT, Li XF, Breitkreutz I, Song W, Neri P, Catley L, Podar K, Hideshima T, Chauhan D, Raje N, Schlossman R, Richardson P, Munshi NC, Anderson KC (2006) Role of B-cell-activating factor in adhesion and growth of human multiple myeloma cells in the bone marrow microenvironment. Cancer Res 66(13):6675–6682

    Article  CAS  PubMed  Google Scholar 

  25. Coppo R (2014) Proteasome inhibitors in progressive renal diseases. Nephrol Dial Transplant 29(Suppl 1):i25–i30

    Article  CAS  PubMed  Google Scholar 

  26. Wen J, Feng Y, Huang W, Chen H, Liao B, Rice L, Preti HA, Kamble RT, Zu Y, Ballon DJ, Chang CC (2010) Enhanced antimyeloma cytotoxicity by the combination of arsenic trioxide and bortezomib is further potentiated by p38 MAPK inhibition. Leuk Res 34(1):85–92

    Article  CAS  PubMed  Google Scholar 

  27. Kobayashi T, Kuroda J, Ashihara E, Oomizu S, Terui Y, Taniyama A, Adachi S, Takagi T, Yamamoto M, Sasaki N, Horiike S, Hatake K, Yamauchi A, Hirashima M, Taniwaki M (2010) Galectin-9 exhibits anti-myeloma activity through JNK and p38 MAP kinase pathways. Leukemia 4:843–850

    Article  Google Scholar 

Download references

Acknowledgments

XJS and YHG carried out the cell proliferation assay, participated in the cell culture and drafted the manuscript. JQ carried out the immunoassays. WS and XHW participated in the cell survival and growth and PCR assay. HBN carried out apoptosis assay. SQJ conceived of the study, participated in its design and coordination, analysis the data and revised the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaoqing Ju.

Ethics declarations

Grand Support

The National Nature Science Foundation of China (81,301,498; 81,271,920; 81,201,351); Jiangsu Provincial Medical Innovation Team and Leading Talents (LJ201133); the Scientific Research Subject of Jiangsu Provincial Health Department (H201422); and the Six Major Human Resource Projects of Jiangsu Province (20,012-WS-119)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, X., Guo, Y., Qi, J. et al. Study on the Association Between miRNA-202 Expression and Drug Sensitivity in Multiple Myeloma Cells. Pathol. Oncol. Res. 22, 531–539 (2016). https://doi.org/10.1007/s12253-015-0035-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12253-015-0035-4

Keywords

Navigation