Skip to main content

Advertisement

Log in

A ‘Waterfall’ Transfer-based Workflow for Improved Quality of Tissue Microarray Construction and Processing in Breast Cancer Research

  • Research
  • Published:
Pathology & Oncology Research

Abstract

A major focus in cancer research is the identification of biomarkers for early diagnosis, therapy prediction and prognosis. Hereby, validation of target proteins on clinical samples is of high importance. Tissue microarrays (TMAs) represent an essential advancement for high-throughput analysis by assembling large numbers of tissue cores with high efficacy and comparability. However, limitations along TMA construction and processing exist. In our presented study, we had to overcome several obstacles in the construction and processing of high-density breast cancer TMAs to ensure good quality sections for further research. Exemplarily, 406 breast tissue cores from formalin-fixed and paraffin embedded samples of 245 patients were placed onto three recipient paraffin blocks. Sectioning was performed using a rotary microtome with a “waterfall” automated transfer system. Sections were stained by immunohistochemistry and immunofluorescence for nine proteins. The number and quality of cores after sectioning and staining was counted manually for each marker. In total, 97.1 % of all cores were available after sectioning, while further 96 % of the remaining cores were evaluable after staining. Thereby, normal tissue cores were more often lost compared to tumor tissue cores. Our workflow provides a robust method for manufacturing high-density breast cancer TMAs for subsequent IHC or IF staining without significant sample loss.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Martini M, Vecchione L, Siena S, Tejpar S, Bardelli A (2012) Targeted therapies: how personal should we go? Nat Rev Clin Oncol 9(2):87–97. doi:10.1038/nrclinonc.2011.164

    Article  CAS  Google Scholar 

  2. Braunschweig T, Chung JY, Hewitt SM (2005) Tissue microarrays: bridging the gap between research and the clinic. Expert Rev Proteomics 2(3):325–336. doi:10.1586/14789450.2.3.325

    Article  CAS  PubMed  Google Scholar 

  3. Hewitt SM, Takikita M, Abedi-Ardekani B, Kris Y, Bexfield K, Braunschweig T, Chung JY (2008) Validation of proteomic-based discovery with tissue microarrays. Proteomics Clin Appl 2(10–11):1460–1466. doi:10.1002/prca.200800003

    Article  CAS  PubMed  Google Scholar 

  4. Battifora H (1986) The multitumor (sausage) tissue block: novel method for immunohistochemical antibody testing. Lab Invest 55(2):244–248

    CAS  PubMed  Google Scholar 

  5. Wan WH, Fortuna MB, Furmanski P (1987) A rapid and efficient method for testing immunohistochemical reactivity of monoclonal antibodies against multiple tissue samples simultaneously. J Immunol Methods 103(1):121–129

    Article  CAS  PubMed  Google Scholar 

  6. Kononen J, Bubendorf L, Kallioniemi A, Barlund M, Schraml P, Leighton S, Torhorst J, Mihatsch MJ, Sauter G, Kallioniemi O-P (1998) Tissue microarrays for high-throughput molecular profiling of tumor specimens. Nat Med 4(7):844–847

    Article  CAS  PubMed  Google Scholar 

  7. Rimm DL, Nielsen TO, Jewell SD, Rohrer DC, Broadwater G, Waldman F, Mitchell KA, Singh B, Tsongalis GJ, Frankel WL, Magliocco AM, Lara JF, Hsi ED, Bleiweiss IJ, Badve SS, Chen B, Ravdin PM, Schilsky RL, Thor A, Berry DA (2011) Cancer and leukemia group B Pathology Committee guidelines for tissue microarray construction representing multicenter prospective clinical trial tissues. J Clin Oncol 29(16):2282–2290. doi:10.1200/JCO.2010.33.2023

    Article  PubMed Central  PubMed  Google Scholar 

  8. Gately K, Kerr K, O’Byrne K (2011) Design, construction, and analysis of cell line arrays and tissue microarrays for gene expression analysis. Methods Mol Biol 784:139–153. doi:10.1007/978-1-61779-289-2_10

    Article  CAS  PubMed  Google Scholar 

  9. Gillett CE, Springall RJ, Barnes DM, Hanby AM (2000) Multiple tissue core arrays in histopathology research: a validation study. J Pathol 192(4):549–553. doi:10.1002/1096-9896(2000)

    Article  CAS  PubMed  Google Scholar 

  10. Hewitt SM (2004) Design, construction, and use of tissue microarrays. Methods Mol Biol 264:61–72. doi:10.1385/1-59259-759-9:061

    CAS  PubMed  Google Scholar 

  11. Onozato ML, Hammond S, Merren M, Yagi Y (2013) Evaluation of a completely automated tissue-sectioning machine for paraffin blocks. J Clin Pathol 66(2):151–154. doi:10.1136/jclinpath-2011-200205

    Article  PubMed  Google Scholar 

  12. Torhorst J, Bucher C, Kononen J, Haas P, Zuber M, Kochli OR, Mross F, Dieterich H, Moch H, Mihatsch M, Kallioniemi OP, Sauter G (2001) Tissue microarrays for rapid linking of molecular changes to clinical endpoints. Am J Pathol 159(6):2249–2256. doi:10.1016/S0002-9440(10)63075-1

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Zhang D, Salto-Tellez M, Putti TC, Do E, Koay ES (2003) Reliability of tissue microarrays in detecting protein expression and gene amplification in breast cancer. Mod Pathol 16(1):79–84. doi:10.1097/01.MP.0000047307.96344.93

    Article  PubMed  Google Scholar 

  14. Buesa RJ (2010) Productivity standards for histology laboratories. Ann Diagn Pathol 14(2):107–124. doi:10.1016/j.anndiagpath.2009.12.005

    Article  PubMed  Google Scholar 

  15. Yang XR, Charette LA, Garcia-Closas M, Lissowska J, Paal E, Sidawy M, Hewitt SM, Rimm DL, Sherman ME (2006) Construction and validation of tissue microarrays of ductal carcinoma in situ and terminal duct lobular units associated with invasive breast carcinoma. Diagn Mol Pathol 15(3):157–161. doi:10.1097/01.pdm.0000213453.45398.e0

    Article  CAS  PubMed  Google Scholar 

  16. Dancau AM, Simon R, Mirlacher M, Sauter G (2010) Tissue microarrays. Methods Mol Biol 576:49–60. doi:10.1007/978-1-59745-545-9_4

    Article  CAS  PubMed  Google Scholar 

  17. Fedor HL, De Marzo AM (2005) Practical methods for tissue microarray construction. Methods Mol Med 103:89–101

    CAS  PubMed  Google Scholar 

  18. Shi SR, Key ME, Kalra KL (1991) Antigen retrieval in formalin-fixed, paraffin-embedded tissues: an enhancement method for immunohistochemical staining based on microwave oven heating of tissue Sections. J Histochem Cytochem 39(6):741–748

    Article  CAS  PubMed  Google Scholar 

  19. Tsao SC, Wu CC, Wen CH, Chai CY, Chen YT (2013) Improved technique for manually constructing tissue microarrays for large-core arrays. Appl Immunohistochem Mol Morphol/Off Publ Soc ApplI mmunohistochem 21(1):85–89. doi:10.1097/PAI.0b013e3182553527

    CAS  Google Scholar 

  20. Hoos A, Cordon-Cardo C (2001) Tissue microarray profiling of cancer specimens and cell lines: opportunities and limitations. Lab Invest 81(10):1331–1338

    Article  CAS  PubMed  Google Scholar 

  21. Shebl AM, Zalata KR, Amin MM, El-Hawary AK (2011) An inexpensive method of small paraffin tissue microarrays using mechanical pencil tips. Diagn Pathol 6:117. doi:10.1186/1746-1596-6-117

    Article  PubMed Central  PubMed  Google Scholar 

  22. Kajdacsy-Balla A, Geynisman JM, Macias V, Setty S, Nanaji NM, Berman JJ, Dobbin K, Melamed J, Kong X, Bosland M, Orenstein J, Bayerl J, Becich MJ, Dhir R, Datta MW (2007) Practical aspects of planning, building, and interpreting tissue microarrays: the Cooperative Prostate Cancer Tissue Resource experience. J Mol Histol 38(2):113–121. doi:10.1007/s10735-006-9054-5

    Article  CAS  PubMed  Google Scholar 

  23. Camp RL, Neumeister V, Rimm DL (2008) A decade of tissue microarrays: progress in the discovery and validation of cancer biomarkers. J Clin Oncol 26(34):5630–5637. doi:10.1200/JCO.2008.17.3567

    Article  PubMed  Google Scholar 

  24. Catchpoole D, Mackie N, McIver S, Chetcuti A, Henwood A, Graf N, Arbuckle S (2011) Tape transfer sectioning of tissue microarrays introduces nonspecific immunohistochemical staining artifacts. Biotech Histochem : Off Publ Biol Stain Comm 86(6):421–428. doi:10.3109/10520295.2010.527859

    Article  CAS  Google Scholar 

  25. Kampf C, Olsson I, Ryberg U, Sjostedt E, Ponten F (2012) Production of tissue microarrays, immunohistochemistry staining and digitalization within the human protein atlas. J Vis Exp: (63). doi:10.3791/3620

  26. Fergenbaum JH, Garcia-Closas M, Hewitt SM, Lissowska J, Sakoda LC, Sherman ME (2004) Loss of antigenicity in stored sections of breast cancer tissue microarrays. Cancer epidemiology, biomarkers & prevention : a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology 13 (4):667–672

  27. Hoos A, Urist MJ, Stojadinovic A, Mastorides S, Dudas ME, Leung DH, Kuo D, Brennan MF, Lewis JJ, Cordon-Cardo C (2001) Validation of tissue microarrays for immunohistochemical profiling of cancer specimens using the example of human fibroblastic tumors. Am J Pathol 158(4):1245–1251. doi:10.1016/S0002-9440(10)64075-8

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Mucci NR, Akdas G, Manely S, Rubin MA (2000) Neuroendocrine expression in metastatic prostate cancer: evaluation of high throughput tissue microarrays to detect heterogeneous protein expression. Human Pathol 31(4):406–414. doi:10.1053/hp.2000.7295

    Article  CAS  Google Scholar 

  29. Watanabe A, Cornelison R, Hostetter G (2005) Tissue microarrays: applications in genomic research. Expert Rev Mol Diagn 5(2):171–181. doi:10.1586/14737159.5.2.171

    Article  CAS  PubMed  Google Scholar 

  30. Packeisen J, Korsching E, Herbst H, Boecker W, Buerger H (2003) Demystified…tissue microarray technology. Mol Pathol 56(4):198–204

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Henriksen KL, Rasmussen BB, Lykkesfeldt AE, Moller S, Ejlertsen B, Mouridsen HT (2007) Semi-quantitative scoring of potentially predictive markers for endocrine treatment of breast cancer: a comparison between whole sections and tissue microarrays. J Clin Pathol 60(4):397–404. doi:10.1136/jcp.2005.034447

    Article  PubMed Central  PubMed  Google Scholar 

  32. Divito KA, Berger AJ, Camp RL, Dolled-Filhart M, Rimm DL, Kluger HM (2004) Automated quantitative analysis of tissue microarrays reveals an association between high Bcl-2 expression and improved outcome in melanoma. Cancer Res 64(23):8773–8777. doi:10.1158/0008-5472.CAN-04-1387

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was performed on behalf of the Interdisciplinary Center for Biobanking—Lübeck (ICB-L) and in connection to the Surgical Center for Translational Oncology—Lübeck (SCTO-L), the North German Tumorbank of Colorectal Cancer (ColoNet), the latter being generously supported by the German Cancer Aid Foundation (DKH e.V. # 108446) and the European Union 7th Framework Programme (FLUODIAMON #201837).

Author Disclosure Statement

The authors declare that they have no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. K. Habermann.

Additional information

M. Oberländer, H. Alkemade, S. Bünger and F. Ernst shared authorship.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Table S1

(DOCX 14 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oberländer, M., Alkemade, H., Bünger, S. et al. A ‘Waterfall’ Transfer-based Workflow for Improved Quality of Tissue Microarray Construction and Processing in Breast Cancer Research. Pathol. Oncol. Res. 20, 719–726 (2014). https://doi.org/10.1007/s12253-014-9752-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12253-014-9752-3

Keywords

Navigation