Skip to main content

Advertisement

Log in

TPX2 Overexpression in Medullary Thyroid Carcinoma Mediates TT Cell Proliferation

  • Research
  • Published:
Pathology & Oncology Research

Abstract

TPX2 (targeting protein for xenopus kinesin-like protein 2), a microtubule-associated protein, plays an important role in the formation of the mitotic spindle. Abnormal expression of TPX2 in various types of malignant tumors has been reported, but less is known for medullary thyroid cancer (MTC). We investigated the expression of TPX2 in human MTC tissues and its potential use as a therapeutic target. Immunohistochemical analysis of TPX2 expression was performed for 32 cases of MTC and 8 cases of normal thyroid. TPX2 expression was found to be significantly higher in MTC compared to normal thyroid tissues (P < 0.05), and to be associated with tumor size, lymph node metastasis, and advanced disease stage. The cellular effects of TPX2 knockdown, including cell proliferation, apoptosis, cell cycle diffusions, and mitotic gene expression were investigated using small interfering RNA (siRNA). TPX2-siRNA caused G1 and G2-phase cell cycle arrest, inhibited cell proliferation, and induced apoptosis. TPX2-siRNA also downregulated Aurora-A and cyclinB1 protein expression in MTC cells and enhanced the expression of p53 protein (P < 0.05). These results suggest that TPX2 may be of potential use as a new marker for MTC prognosis and therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Simard EP, Ward EM, Siegel R, Jemal A (2012) Cancers with increasing incidence trends in the United States: 1999 through 2008. CA Cancer J Clin 62(2):118–128

    Google Scholar 

  2. Trimboli P, Ulisse S, Graziano F, Marzullo A, Ruggieri M, Calvanese A, Piccirilli F, Cavaliere R, Fumarola A, D’Armiento M (2006) Trend in thyroid carcinoma size, age at diagnosis, and histology in a retrospective study of 500 cases diagnosed over 20 years. Thyroid 16(11):1151–1155

    Article  CAS  PubMed  Google Scholar 

  3. Rahmani N, Abbas Hashemi S, Fazli M, Raisian M (2013) Clinical management and outcomes of papillary, follicular and medullary thyroid cancer surgery. Med Glas (Zenica) 10(1):164–167

    Google Scholar 

  4. Janssen A, Medema RH (2012) Genetic instability: tipping the balance. Oncogene. doi:10.1038/onc.2012.576

    Google Scholar 

  5. Lin D, Ma Y, Xiao T, Guo S, Han N, Su K, Yi S, Fang J, Cheng S, Gao Y (2006) TPX2 expression and its significance in squamous cell carcinoma of lung. Zhonghua Bing Li Xue Za Zhi Chin J Pathol 35(9):540

    Google Scholar 

  6. Shigeishi H, Ohta K, Hiraoka M, Fujimoto S, Minami M, Higashikawa K, Kamata N (2009) Expression of TPX2 in salivary gland carcinomas. Oncol Rep 21(2):341

    CAS  PubMed  Google Scholar 

  7. Mohsenifar J, Almassi-Aghdam M, Mohammad-Taheri Z, Zare K, Jafari B, Atri M, Mortazavi S-H, Azadeh P, Bagherzadeh M, Rahimi F (2007) Prognostic values of proliferative markers ki-67 and repp86 in breast cancer. Arch Iran Med 10(1):27–31

    CAS  PubMed  Google Scholar 

  8. Baldini E, Arlot-Bonnemains Y, Sorrenti S, Mian C, Pelizzo MR, De Antoni E, Palermo S, Morrone S, Barollo S, Nesca A, Moretti CG, D’Armiento M, Ulisse S (2011) Aurora kinases are expressed in medullary thyroid carcinoma (MTC) and their inhibition suppresses in vitro growth and tumorigenicity of the MTC derived cell line TT. BMC Cancer 11:411

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Schmittgen TD, Livak KJ (2008) Analyzing real-time PCR data by the comparative CT method. Nat Protoc 3(6):1101–1108

    Article  CAS  PubMed  Google Scholar 

  10. Wittmann T, Hyman A, Desai A (2001) The spindle: a dynamic assembly of microtubules and motors. Nat Cell Biol 3:E28–E34

    Article  CAS  PubMed  Google Scholar 

  11. Aguirre-Portolés C, Bird AW, Hyman A et al (2012) TPX2 controls spindle integrity, genome stability, and tumor development. Cancer Res 72(6):1518–1528

    Article  PubMed  Google Scholar 

  12. Warner SL, Stephens BJ, Nwokenkwo S, Hostetter G, Sugeng A, Hidalgo M, Trent JM, Han H, Von Hoff DD (2009) Validation of TPX2 as a potential therapeutic target in pancreatic cancer cells. Clin Cancer Res 15(21):6519–6528

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Tonon G, Wong K-K, Maulik G, Brennan C, Feng B, Zhang Y, Khatry DB, Protopopov A, You MJ, Aguirre AJ (2005) High-resolution genomic profiles of human lung cancer. Proc Natl Acad Sci U S A 102(27):9625–9630

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Sillars-Hardebol AH, Carvalho B, Tijssen M, Belien JA, de Wit M, Delis-van Diemen PM, Ponten F, van de Wiel MA, Fijneman RJ, Meijer GA (2012) TPX2 and AURKA promote 20q amplicon-driven colorectal adenoma to carcinoma progression. Gut 61(11):1568–1575

    Article  CAS  PubMed  Google Scholar 

  15. Chang H, Wang J, Tian Y, Xu J, Gou X, Cheng J (2012) The TPX2 gene is a promising diagnostic and therapeutic target for cervical cancer. Oncol Rep 27(5):1353–1359

    CAS  PubMed  Google Scholar 

  16. Li B, Qi XQ, Chen X, Huang X, Liu GY, Chen HR, Huang CG, Luo C, Lu YC (2010) Expression of targeting protein for Xenopus kinesin-like protein 2 is associated with progression of human malignant astrocytoma. Brain Res 1352:200–207

    Article  CAS  PubMed  Google Scholar 

  17. Morgan-Lappe SE, Tucker LA, Huang X, Zhang Q, Sarthy AV, Zakula D, Vernetti L, Schurdak M, Wang J, Fesik SW (2007) Identification of Ras-related nuclear protein, targeting protein for xenopus kinesin-like protein 2, and stearoyl-CoA desaturase 1 as promising cancer targets from an RNAi-based screen. Cancer research 67(9):4390–4398

    Article  CAS  PubMed  Google Scholar 

  18. Carson DA, Lois A (1995) Cancer progression and p53. Lancet 346(8981):1009–1011

    Article  CAS  PubMed  Google Scholar 

  19. Pascreau G, Eckerdt F, Lewellyn AL, Prigent C, Maller JL (2009) Phosphorylation of p53 is regulated by TPX2-Aurora A in xenopus oocytes. J Biol Chem 284(9):5497–5505

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Marumoto T, Zhang D, Saya H (2005) Aurora-A—a guardian of poles. Nat Rev Cancer 5(1):42–50

    Article  CAS  PubMed  Google Scholar 

  21. Ferchichi I, Sassi Hannachi S, Baccar A et al (2013) Assessment of Aurora A kinase expression in breast cancer: A tool for early diagnosis? Dis Markers 34(2):63–69

    CAS  PubMed Central  PubMed  Google Scholar 

  22. Lee ECY, Frolov A, Li R, Ayala G, Greenberg NM (2006) Targeting Aurora kinases for the treatment of prostate cancer. Cancer research 66(10):4996–5002

    Article  CAS  PubMed  Google Scholar 

  23. Ulisse S, Delcros JG, Baldini E, Toller M, Curcio F, Giacomelli L, Prigent C, Ambesi-Impiombato FS, D’Armiento M, Arlot-Bonnemains Y (2006) Expression of Aurora kinases in human thyroid carcinoma cell lines and tissues. Int J Cancer 119(2):275–282

    CAS  PubMed  Google Scholar 

  24. Kufer TA, Silljé HH, Körner R, Gruss OJ, Meraldi P, Nigg EA (2002) Human TPX2 is required for targeting Aurora-A kinase to the spindle. J Cell Biol 158(4):617–623

    CAS  PubMed Central  PubMed  Google Scholar 

  25. Bayliss R, Sardon T, Ebert J, Lindner D, Vernos I, Conti E (2004) Determinants for Aurora-A activation and Aurora-B discrimination by TPX2. Cell Cycle 3(4):402–405

    Google Scholar 

  26. Eyers PA, Erikson E, Chen LG, Maller JL (2003) A novel mechanism for activation of the protein kinase Aurora A. Curr Biol CB 13(8):691

    Article  CAS  Google Scholar 

  27. Katayama H, Sasai K, Kawai H, Yuan Z-M, Bondaruk J, Suzuki F, Fujii S, Arlinghaus RB, Czerniak BA, Sen S (2003) Phosphorylation by aurora kinase A induces Mdm2-mediated destabilization and inhibition of p53. Nat Genet 36(1):55–62

    PubMed  Google Scholar 

  28. Liu Q, Kaneko S, Yang L, Feldman RI, Nicosia SV, Chen J, Cheng JQ (2004) Aurora-A abrogation of p53 DNA binding and transactivation activity by phosphorylation of serine 215. J Biol Chem 279(50):52175–52182

    Article  CAS  PubMed  Google Scholar 

  29. Rieder CL (2011) Mitosis in vertebrates: the G2/M and M/A transitions and their associated checkpoints. Chromosom Res 19(3):291–306

    Article  Google Scholar 

  30. Sasayama T, Marumoto T, Kunitoku N, Zhang D, Tamaki N, Kohmura E, Saya H, Hirota T (2005) Over-expression of Aurora-A targets cytoplasmic polyadenylation element binding protein and promotes mRNA polyadenylation of Cdk1 and cyclin B1. Genes Cells 10(7):627–638

    Article  CAS  PubMed  Google Scholar 

  31. Marumoto T, Hirota T, Morisaki T, Kunitoku N, Zhang D, Ichikawa Y, Sasayama T, Kuninaka S, Mimori T, Tamaki N (2002) Roles of aurora‐A kinase in mitotic entry and G2 checkpoint in mammalian cells. Genes Cells 7(11):1173–1182

    Article  CAS  PubMed  Google Scholar 

  32. Moore JD (2013) In the wrong place at the wrong time: does cyclin mislocalization drive oncogenic transformation? Nat Rev Cancer 13(3):201–208

    Article  CAS  PubMed  Google Scholar 

Download references

Conflict of Interest

All authors have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Geling Liu.

Additional information

Xiaolin Yang and Geling Liu contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, X., Liu, G., Xiao, H. et al. TPX2 Overexpression in Medullary Thyroid Carcinoma Mediates TT Cell Proliferation. Pathol. Oncol. Res. 20, 641–648 (2014). https://doi.org/10.1007/s12253-014-9743-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12253-014-9743-4

Keywords

Navigation