Pathology & Oncology Research

, Volume 20, Issue 2, pp 427–433 | Cite as

Clinicopathological Sex- Related Relevance of Musashi1 mRNA Expression in Esophageal Squamous Cell Carcinoma Patients

  • Meysam Moghbeli
  • Mohammad Mahdi Forghanifard
  • Azadeh Aarabi
  • Akram Mansourian
  • Mohammad Reza Abbaszadegan
Research

Abstract

The cancer stem cell theory is considered as the spotlight of cancer biology, in which a subpopulation of tumor cells show unlimited proliferative and self renewal capacities. Post-transcriptional regulation is involved in different cellular functions such as cell differentiation and proliferation which results in cellular diversity. Musashi1 (Msi1) is one of the most important RNA-binding proteins (RBPs) which are involved in translational inhibition. Although, Msi1 targets are largely unknown, p21WAF-1, a cell cycle regulator, and Numb, inhibitor of notch signaling pathway, are well-known factors which are suppressed by the Msi1 in normal and cancer stem cells. Msi1 expression in tumor tissues from 53 ESCC patients was compared to normal tissues using real-time polymerase chain reaction (PCR). Msi1 was significantely overexpressed in 41.5 % of tumor samples and we observed a significant correlation between Msi1 expression and sex, in which the males had shown a higher level of Msi1 expression in comparison with the females (2.00 Vs 0.78 fold changes, p = 0.05). In this study, we assessed whether Msi1 is expressed in ESCC samples suggesting this protein as a novel cancer stem cell marker which requires further studies.

Keywords

Esophageal squamous cell carcinoma Musashi1 (Msi1) Expressional analysis, Real-time PCR 

References

  1. 1.
    Gholamin M, Moaven O, Memar B, Farshchian M, Naseh H, Malekzadeh R, Sotoudeh M, Rajabi-Mashhadi MT, Forghani MN, Farrokhi F, Abbaszadegan MR (2009) Overexpression and interactions of interleukin-10, transforming growth factor beta, and vascular endothelial growth factor in esophageal squamous cell carcinoma. World J Surg 33(7):1439–1445PubMedCrossRefGoogle Scholar
  2. 2.
    Ben-Porath I, Thomson MW, Carey VJ, Ge R, Bell GW, Regev A, Weinberg RA (2008) An embryonic stem cell-like gene expression signature in poorly differentiated aggressive human tumors. Nat Genet 40(5):499–507PubMedCentralPubMedCrossRefGoogle Scholar
  3. 3.
    Pardal R, Clarke MF, Morrison SJ (2003) Applying the principles of stem-cell biology to cancer. Nat Rev Cancer 3(12):895–902PubMedCrossRefGoogle Scholar
  4. 4.
    Schwanhausser B, Busse D, Li N, Dittmar G, Schuchhardt J, Wolf J, Chen W, Selbach M (2011) Global quantification of mammalian gene expression control. Nature 473(7347):337–342Google Scholar
  5. 5.
    Jackson RJ, Hellen CU, Pestova TV (2010) The mechanism of eukaryotic translation initiation and principles of its regulation. Nat Rev Mol Cell Biol 11(2):113–127Google Scholar
  6. 6.
    Sonenberg N, Hinnebusch AG (2009) Regulation of translation initiation in eukaryotes: mechanisms and biological targets. Cell 136(4):731–745PubMedCentralPubMedCrossRefGoogle Scholar
  7. 7.
    Grzmil M, Hemmings BA (2012) Translation regulation as a therapeutic target in cancer. Cancer Res 72(16):3891–3900Google Scholar
  8. 8.
    Battelli C, Nikopoulos GN, Mitchell JG, Verdi JM (2006) The RNA-binding protein Musashi-1 regulates neural development through the translational repression of p21WAF-1. Mol Cell Neurosci 31(1):85–96PubMedCrossRefGoogle Scholar
  9. 9.
    Imai T, Tokunaga A, Yoshida T, Hashimoto M, Mikoshiba K, Weinmaster G, Nakafuku M, Okano H (2001) The neural RNA-binding protein Musashi1 translationally regulates mammalian numb gene expression by interacting with its mRNA. Mol Cell Biol 21(12):3888–3900PubMedCentralPubMedCrossRefGoogle Scholar
  10. 10.
    Kawahara H, Imai T, Imataka H, Tsujimoto M, Matsumoto K, Okano H (2008) Neural RNA-binding protein Musashi1 inhibits translation initiation by competing with eIF4G for PABP. J Cell Biol 181(4):639–653PubMedCentralPubMedCrossRefGoogle Scholar
  11. 11.
    Okano H, Kawahara H, Toriya M, Nakao K, Shibata S, Imai T (2005) Function of RNA-binding protein Musashi-1 in stem cells. Exp Cell Res 306(2):349–356PubMedCrossRefGoogle Scholar
  12. 12.
    Guo M, Jan LY, Jan YN (1996) Control of daughter cell fates during asymmetric division: interaction of Numb and Notch. Neuron 17(1):27–41PubMedCrossRefGoogle Scholar
  13. 13.
    Di Marcotullio L, Ferretti E, Greco A, De Smaele E, Po A, Sico MA, Alimandi M, Giannini G, Maroder M, Screpanti I, Gulino A (2006) Numb is a suppressor of Hedgehog signalling and targets Gli1 for Itch-dependent ubiquitination. Nat Cell Biol 8(12):1415–1423PubMedCrossRefGoogle Scholar
  14. 14.
    McGill MA, McGlade CJ (2003) Mammalian numb proteins promote Notch1 receptor ubiquitination and degradation of the Notch1 intracellular domain. J Biol Chem 278(25):23196–23203PubMedCrossRefGoogle Scholar
  15. 15.
    Wakamatsu Y, Maynard TM, Jones SU, Weston JA (1999) NUMB localizes in the basal cortex of mitotic avian neuroepithelial cells and modulates neuronal differentiation by binding to NOTCH-1. Neuron 23(1):71–81PubMedCrossRefGoogle Scholar
  16. 16.
    Glazer RI, Wang XY, Yuan H, Yin Y (2008) Musashi1: a stem cell marker no longer in search of a function. Cell Cycle 7(17):2635–2639PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    Wang XY, Yin Y, Yuan H, Sakamaki T, Okano H, Glazer RI (2008) Musashi1 modulates mammary progenitor cell expansion through proliferin-mediated activation of the Wnt and Notch pathways. Mol Cell Biol 28(11):3589–3599PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    Devgan V, Mammucari C, Millar SE, Brisken C, Dotto GP (2005) p21WAF1/Cip1 is a negative transcriptional regulator of Wnt4 expression downstream of Notch1 activation. Genes Dev 19(12):1485–1495PubMedCentralPubMedCrossRefGoogle Scholar
  19. 19.
    Li L, Yuan H, Weaver CD, Mao J, Farr GH 3rd, Sussman DJ, Jonkers J, Kimelman D, Wu D (1999) Axin and Frat1 interact with dvl and GSK, bridging Dvl to GSK in Wnt-mediated regulation of LEF-1. Embo J 18(15):4233–4240PubMedCentralPubMedCrossRefGoogle Scholar
  20. 20.
    Toda M, Iizuka Y, Yu W, Imai T, Ikeda E, Yoshida K, Kawase T, Kawakami Y, Okano H, Uyemura K (2001) Expression of the neural RNA-binding protein Musashi1 in human gliomas. Glia 34(1):1–7PubMedCrossRefGoogle Scholar
  21. 21.
    Gotte M, Wolf M, Staebler A, Buchweitz O, Kelsch R, Schuring AN, Kiesel L (2008) Increased expression of the adult stem cell marker Musashi-1 in endometriosis and endometrial carcinoma. J Pathol 215(3):317–329PubMedCrossRefGoogle Scholar
  22. 22.
    Shu HJ, Saito T, Watanabe H, Ito JI, Takeda H, Okano H, Kawata S (2002) Expression of the Musashi1 gene encoding the RNA-binding protein in human hepatoma cell lines. Biochem Biophys Res Commun 293(1):150–154PubMedCrossRefGoogle Scholar
  23. 23.
    Schulenburg A, Cech P, Herbacek I, Marian B, Wrba F, Valent P, Ulrich-Pur H (2007) CD44-positive colorectal adenoma cells express the potential stem cell markers musashi antigen (msi1) and ephrin B2 receptor (EphB2). J Pathol 213(2):152–160PubMedCrossRefGoogle Scholar
  24. 24.
    Forghanifard MM, Moaven O, Farshchian M, Montazer M, Raeisossadati R, Abdollahi A, Moghbeli M, Nejadsattari T, Parivar K, Abbaszadegan MR (2012) Expression analysis elucidates the roles of MAML1 and Twist1 in esophageal squamous cell carcinoma aggressiveness and metastasis. Ann Surg Oncol 19(3):743–749Google Scholar
  25. 25.
    Kaneko Y, Sakakibara S, Imai T, Suzuki A, Nakamura Y, Sawamoto K, Ogawa Y, Toyama Y, Miyata T, Okano H (2000) Musashi1: an evolutionally conserved marker for CNS progenitor cells including neural stem cells. Dev Neurosci 22(1–2):139–153PubMedCrossRefGoogle Scholar
  26. 26.
    Siddall NA, McLaughlin EA, Marriner NL, Hime GR (2006) The RNA-binding protein Musashi is required intrinsically to maintain stem cell identity. Proc Natl Acad Sci U S A 103(22):8402–8407PubMedCentralPubMedCrossRefGoogle Scholar
  27. 27.
    Hemmati HD, Nakano I, Lazareff JA, Masterman-Smith M, Geschwind DH, Bronner-Fraser M, Kornblum HI (2003) Cancerous stem cells can arise from pediatric brain tumors. Proc Natl Acad Sci U S A 100(25):15178–15183PubMedCentralPubMedCrossRefGoogle Scholar
  28. 28.
    Yokota N, Mainprize TG, Taylor MD, Kohata T, Loreto M, Ueda S, Dura W, Grajkowska W, Kuo JS, Rutka JT (2004) Identification of differentially expressed and developmentally regulated genes in medulloblastoma using suppression subtraction hybridization. Oncogene 23(19):3444–3453PubMedCrossRefGoogle Scholar
  29. 29.
    Clement V, Sanchez P, de Tribolet N, Radovanovic I, Ruiz i Altaba A (2007) HEDGEHOG-GLI1 signaling regulates human glioma growth, cancer stem cell self-renewal, and tumorigenicity. Curr Biol 17(2):165–172PubMedCentralPubMedCrossRefGoogle Scholar
  30. 30.
    Gonzalez F, Barragan Monasterio M, Tiscornia G, Montserrat Pulido N, Vassena R, Batlle Morera L, Rodriguez Piza I, Izpisua Belmonte JC (2009) Generation of mouse-induced pluripotent stem cells by transient expression of a single nonviral polycistronic vector. Proc Natl Acad Sci U S A 106(22):8918–8922PubMedCentralPubMedCrossRefGoogle Scholar
  31. 31.
    Stadtfeld M, Maherali N, Borkent M, Hochedlinger K (2010) A reprogrammable mouse strain from gene-targeted embryonic stem cells. Nat Methods 7(1):53–55Google Scholar
  32. 32.
    Yu J, Hu K, Smuga-Otto K, Tian S, Stewart R, Slukvin II, Thomson JA (2009) Human induced pluripotent stem cells free of vector and transgene sequences. Science 324(5928):797–801PubMedCentralPubMedCrossRefGoogle Scholar
  33. 33.
    Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian S, Nie J, Jonsdottir GA, Ruotti V, Stewart R, Slukvin II, Thomson JA (2007) Induced pluripotent stem cell lines derived from human somatic cells. Science 318(5858):1917–1920PubMedCrossRefGoogle Scholar
  34. 34.
    Potten CS, Booth C, Tudor GL, Booth D, Brady G, Hurley P, Ashton G, Clarke R, Sakakibara S, Okano H (2003) Identification of a putative intestinal stem cell and early lineage marker; musashi-1. Differentiation 71(1):28–41PubMedCrossRefGoogle Scholar
  35. 35.
    Bobryshev YV, Freeman AK, Botelho NK, Tran D, Levert-Mignon AJ, Lord RV (2010) Expression of the putative stem cell marker Musashi-1 in Barrett’s esophagus and esophageal adenocarcinoma. Dis Esophagus 23(7):580–589Google Scholar
  36. 36.
    Nikpour P, Baygi ME, Steinhoff C, Hader C, Luca AC, Mowla SJ, Schulz WA (2011) The RNA binding protein Musashi1 regulates apoptosis, gene expression and stress granule formation in urothelial carcinoma cells. J Cell Mol Med 15(5):1210–1224Google Scholar
  37. 37.
    Nikpour P, Emadi-Baygi M, Mohhamad-Hashem F, Maracy MR, Haghjooy-Javanmard S (2013) MSI1 overexpression in diffuse type of gastric cancer. Pathol Res Pract 209(1):10–13Google Scholar
  38. 38.
    Todaro M, Francipane MG, Medema JP, Stassi G (2010) Colon cancer stem cells: promise of targeted therapy. Gastroenterology 138(6):2151–2162Google Scholar

Copyright information

© Arányi Lajos Foundation 2013

Authors and Affiliations

  • Meysam Moghbeli
    • 1
  • Mohammad Mahdi Forghanifard
    • 2
  • Azadeh Aarabi
    • 1
  • Akram Mansourian
    • 3
    • 4
  • Mohammad Reza Abbaszadegan
    • 1
    • 5
    • 6
  1. 1.Division of Human Genetics, Immunology Research Center, Avicenna Research InstituteMashhad University of Medical SciencesMashhadIran
  2. 2.Department of Biology, Damghan BranchIslamic Azad UniversityDamghanIran
  3. 3.Department of Pathology, Ghaem HospitalMashhad University of Medical SciencesMashhadIran
  4. 4.Department of Pathology, Imam Reza HospitalMashhad University of Medical SciencesMashhadIran
  5. 5.Medical Genetics Research Center, Medical SchoolMashhad University of Medical SciencesMashhadIran
  6. 6.Division of Human Genetics, Immunology Research Center, Avicenna Research InstituteMashhad University of Medical SciencesMashhadIran

Personalised recommendations