Skip to main content

Advertisement

Log in

Common Variants at 8q24 are Associated with Prostate Cancer Risk in Serbian Population

  • Research
  • Published:
Pathology & Oncology Research

Abstract

Previous studies have shown correlation between single nucleotide polymorphisms (SNPs) at 8q24 and prostate cancer (PCa) risk. This study aimed to evaluate possible association between genotypes and alleles of 8q24 polymorphisms (rs1447295, rs4242382, rs6983267, rs7017300, and rs7837688) and PCa risk and progression. 150 patients with PCa, 150 patients with benign prostatic hyperplasia (BPH), and 100 healthy controls selected from the general population were recruited for this study. SNPs were genotyped by using PCR-RFLP analysis. There was a significant positive association between the A allele of the SNP rs4242382 and PCa risk [PCa vs. BPH comparison, P = 0.014 for the best-fitting dominant model; odds ratio (OR) =1.98; 95 % confidence interval (95%CI) 1.14–3.43]. We found evidence (P = 0.0064) of association between PCa risk and rs7017300 (heterozygote OR = 1.60; 95%CI 0.95–2.69) when comparing genotype distributions in PCa and BPH patients. The association between T allele rs7837688 and PCa risk was determined in PCa vs. BPH comparison with the best-fitting model of inheritance being log-additive (P = 0.0033; OR = 2.14, 95%CI 1.27–3.61). Odds ratio for carriers of rs6983267 TT genotype under recessive model of association with PCa was found to be 0.36 (PCa vs. control comparison, P = 0.0029; 95%CI 0.19–0.71). For rs1447295, deviation from Hardy-Weinberg equilibrium was observed in BPH patients and controls. We found no association between parameters of PCa progression and five 8q24 SNPs. Locus 8q24 harbors genetic variants associated with PCa risk in Serbian population.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hamano T, Matsui H, Sekine Y, Ohtake N, Nakata S, Suzuki K (2010) Association of SNP rs1447295 and microsatellite marker DG8S737 with familial prostate cancer and high grade disease. J Urol 184:738–742

    Article  PubMed  CAS  Google Scholar 

  2. Chang YM, Kung HJ, Evans C (2007) Nonreceptor tyrosine kinases in prostate cancer. Neoplasia 9:90–100

    Article  PubMed  CAS  Google Scholar 

  3. Terada N, Tsuchiya N, Ma Z, Shimizu Y, Kobayashi T, Nakamura E et al (2008) Association of genetic polymorphisms at 8q24 with the risk of prostate cancer in a Japanese population. Prostate 68:1689–1695

    Article  PubMed  Google Scholar 

  4. Schulz W, Hatina J (2006) Epigenetics of prostate cancer: beyond DNA methylation. J Cell Mol Med 10:100–125

    Article  PubMed  CAS  Google Scholar 

  5. Vrdoljak E, Wojtukiewicz MZ, Pienkowski T, Bodoky G, Berzinec P, Finek J et al (2011) South Eastern European Research Oncology Group. Cancer epidemiology in Central, South and Eastern European countries. Croat Med J 52:478–487

    Article  PubMed  Google Scholar 

  6. Cancer Registry of Central Serbia, Institute of Public Health of the Republic of Serbia 1999–2009. Available at: http://www.batut.org.rs/ Accessed: March 2, 2012

  7. Wasserman NF, Aneas I, Nobrega MA (2010) An 8q24 gene desert variant associated with prostate cancer risk confers differential in vivo activity to a MYC enhancer. Genome Res 20:1191–1197

    Article  PubMed  CAS  Google Scholar 

  8. Zheng SL, Sun J, Wiklund F, Smith S, Stattin P, Li G et al (2008) Cumulative association of five genetic variants with prostate cancer. N Engl J Med 358:910–919

    Article  PubMed  CAS  Google Scholar 

  9. Liu H, Wang B, Han C (2011) Meta-analyses of genome-wide and replication association studies on prostate cancer. Prostate 71:209–224

    Article  PubMed  Google Scholar 

  10. Amundadottir LT, Sulem P, Gudmundsson J, Helgason A, Baker A, Agnarsson BA et al (2006) A common variant associated with prostate cancer in European and African populations. Nat Genet 38:652–658

    Article  PubMed  CAS  Google Scholar 

  11. Wang L, McDonnell SK, Slusser JP, Hebbring SJ, Cunningham JM, Jacobsen SJ et al (2007) Two common chromosome 8q24 variants are associated with increased risk for prostate cancer. Cancer Res 67:2944–2950

    Article  PubMed  CAS  Google Scholar 

  12. Gleason DF, Mellinger GT (1974) Prediction of prognosis for prostatic adenocarcinoma by combined histological grading and clinical staging. J Urol 111:58–64

    PubMed  CAS  Google Scholar 

  13. Catalona WJ, Hudson MA, Scardino PT, Richie JP, Ahmann FR, Flanigan RC et al (1994) Selection of optimal prostate specific antigen cutoffs for early detection of prostate cancer: receiver operating characteristic curves. J Urol 152:2037–2042

    PubMed  CAS  Google Scholar 

  14. D’Amico AV, Whittington R, Malkowicz SB, Schultz D, Blank K, Broderick GA et al (1998) Biochemical outcome after radical prostatectomy, external beam radiation therapy, or interstitial radiation therapy for clinically localized prostate cancer. JAMA 280:969–974

    Article  PubMed  Google Scholar 

  15. Medeiros RM, Morais A, Vasconcelos A, Costa S, Pinto D, Oliveira J et al (2002) Outcome in prostate cancer: association with endothelial nitric oxide synthase Glu-Asp298 polymorphism at exon 7. Clin Cancer Res 8:3433–3437

    PubMed  CAS  Google Scholar 

  16. Wallis Y, Morrell N (2011) Automated DNA sequencing. Methods Mol Biol 688:173–185

    Article  PubMed  CAS  Google Scholar 

  17. Dianat SS, Margreiter M, Eckersberger E, Finkelstein J, Kuehas F, Herwig R et al (2009) Gene polymorphisms and prostate cancer: the evidence. BJU Int 104:1560–1572

    Article  PubMed  CAS  Google Scholar 

  18. Zheng SL, Sun J, Cheng Y, Li G, Hsu FC, Zhu Y et al (2007) Association between two unlinked loci at 8q24 and prostate cancer risk among European Americans. J Natl Cancer Inst 99:1525–1533

    Article  PubMed  CAS  Google Scholar 

  19. Freedman ML, Haiman CA, Patterson N, McDonald GJ, Tandon A, Waliszewska A et al (2006) Admixture mapping identifies 8q24 as a prostate cancer risk locus in African-American men. Proc Natl Acad Sci USA 103:14068–14073

    Article  PubMed  CAS  Google Scholar 

  20. Chen M, Huang YC, Ko IL, Yang S, Chang YH, Huang W et al (2009) The rs1447295 at 8q24 is a risk variant for prostate cancer in Taiwanese men. J Urol 74:698–701

    Article  Google Scholar 

  21. Schumacher FR, Feigelson HC, Cox DG, Haiman CA, Albanes D, Buring J et al (2007) A common 8q24 variant in prostate and breast cancer from a large nested case–control study. Cancer Res 67:2951–2956

    Article  PubMed  CAS  Google Scholar 

  22. Salinas CA, Kwon E, Carlson CS, Koopmeiners JS, Feng Z, Karyadi DM et al (2008) Multiple independent genetic variants in the 8q24 region are associated with prostate cancer risk. Cancer Epidemiol Biomark Prev 17:1203–1213

    Article  CAS  Google Scholar 

  23. Penney KL, Salinas CA, Pomerantz M, Schumacher FR, Beckwith CA, Lee GS et al (2009) Evaluation of 8q24 and 17q risk loci and prostate cancer mortality. Clin Cancer Res 15:3223–3230

    Article  PubMed  CAS  Google Scholar 

  24. Okobia MN, Zmuda JM, Ferrell RE, Patrick AL, Bunker CH (2011) Chromosome 8q24 variants are associated with prostate cancer risk in a high risk population of African ancestry. Prostate 71:1054–1063

    Article  PubMed  CAS  Google Scholar 

  25. Cussenot O, Azzouzi AR, Bantsimba-Malanda G, Gaffroy C, Mangin P, Cormier L et al (2008) Effect of genetic variability within 8q24 on aggressiveness patterns at diagnosis and familial status of prostate cancer. Clin Cancer Res 14:5635–5639

    Article  PubMed  CAS  Google Scholar 

  26. Troutman SM, Sissung TM, Cropp CD, Venzon DJ, Spencer SD, Adesunloye BA et al (2012) Racial disparities in the association between variants on 8q24 and prostate cancer: a systematic review and meta-analysis. Oncologist 17:312–320

    Article  PubMed  CAS  Google Scholar 

  27. Suuriniemi M, Agalliu I, Schaid DJ, Johanneson B, McDonnell SK, Iwasaki L et al (2007) Confirmation of a positive association between prostate cancer risk and a locus at chromosome 8q24. Cancer Epidemiol Biomark Prev 16:809–814

    Article  CAS  Google Scholar 

  28. Os’kina NA, Boiarskikh UA, Lazarev AF, Petrova VD, Ganov DI, Tonacheva OG et al (2012) Association of chromosome 8q24 variants with prostate cancer risk in the Siberian region of Russia and meta-analysis. Mol Biol (Mosk) 46:234–241

    Google Scholar 

  29. Joung JY, Park S, Yoon H, Lee SJ, Park WS, Seo HK et al (2012) Association of common variations of 8q24 with the risk of prostate cancer in Koreans and a review of the Asian population. BJU Int 110:E318–E325

    Article  PubMed  CAS  Google Scholar 

  30. Wokołorczyk D, Gliniewicz B, Stojewski M, Sikorski A, Złowocka E, Debniak T et al (2010) The rs1447295 and DG8S737 markers on chromosome 8q24 and cancer risk in the Polish population. Eur J Cancer Prev 19:167–171

    Article  PubMed  Google Scholar 

  31. Zeegers MP, Khan HS, Schouten LJ, van Dijk B, Goldbohn AR, Shalken J et al (2010) Genetic marker polymorphisms on chromosome 8q24 and prostate cancer in the Dutch population: DG8S737 may not be the causative variant. Eur J Hum Genet 19:118–120

    Article  PubMed  Google Scholar 

  32. Robbins C, Torres JB, Hooker S, Bonilla C, Hernandez W, Candreva A et al (2007) Confirmation study of prostate cancer risk variants at 8q24 in African Americans identifies a novel risk locus. Genome Res 17:1717–1722

    Article  PubMed  CAS  Google Scholar 

  33. Murphy AB, Ukoli F, Freeman V, Bennett F, Aiken W, Tulloch T et al (2012) 8q24 risk alleles in West African and Caribbean men. Prostate 72:1366–1373

    Article  PubMed  CAS  Google Scholar 

  34. Pal P, Xi H, Guha S, Sun G, Helfand BT, Meeks JJ et al (2009) Common variants in 8q24 are associated with risk for prostate cancer and tumor aggressiveness in men of European ancestry. Prostate 69:1548–1556

    Article  PubMed  CAS  Google Scholar 

  35. Beuten J, Gelfond JA, Martinez-Fierro ML, Weldon KS, Crandall AC, Rojas-Martinez A et al (2009) Association of chromosome 8q variants with prostate cancer risk in Caucasian and Hispanic men. Carcinogenesis 30:1372–1379

    Article  PubMed  CAS  Google Scholar 

  36. Bao BY, Pao JB, Lin VC, Huang CN, Chang TY, Lan YH et al (2010) Individual and cumulative association of prostate cancer susceptibility variants with clinicopathologic characteristics of the disease. Clin Chim Acta 411:1232–1237

    Article  PubMed  CAS  Google Scholar 

  37. Fitzgerald LM, Kwon EM, Koopmeiners JS, Salinas CA, Standford JL, Ostrander EA (2009) Analysis of recently identified prostate cancer susceptibility loci in a population-based study: associations with family history and clinical features. Clin Cancer Res 15:3231–3237

    Article  PubMed  CAS  Google Scholar 

  38. Yeager M, Xiao N, Hayes RB, Bouffard P, Desany B, Burdet L et al (2008) Comprehensive resequence analysis of a 136 kb region of human chromosome 8q24 associated with prostate and colon cancers. Hum Genet 124:161–170

    Article  PubMed  CAS  Google Scholar 

  39. Sun J, Lange EM, Isaacs SD, Liu W, Wiley KE, Lange L et al (2008) Chromosome 8q24 risk variants in hereditary and non-hereditary prostate cancer patients. Prostate 68:489–497

    Article  PubMed  CAS  Google Scholar 

  40. Xu Z, Bensen JT, Smith GJ, Mohler JL, Taylor JA (2011) GWAS SNP replication among African American and European American men in the North Carolina—Louisiana prostate cancer project. Prostate 71:881–891

    Article  PubMed  CAS  Google Scholar 

  41. Chan JY, Li H, Singh O, Mahajan A, Ramasamy S, Subramaniyan K, et al. (2012) 8q24 and 17q prostate cancer susceptibility loci in a multiethnic Asian cohort. Urol Oncol 1–8

  42. Papanikolopoulou A, Landt O, Ntoumas K, Bolomitis S, Tyritzis SI, Constantinides C et al (2012) The multi-cancer marker, rs6983267, located at region 3 of chromosome 8q24, is associated with prostate cancer in Greek patients but does not contribute to the aggressiveness of the disease. Clin Chem Lab Med 50:379–385

    Article  CAS  Google Scholar 

  43. Cochran WG (1954) Some methods for strengthening the common χ2 tests. Biometrics 10:417–451

    Article  Google Scholar 

Download references

Conflict of Interest

The Authors declare that there is no conflict of interest.

Grant Support

The research was supported by the Ministry of Education and Science of Serbia (Project no. 173016).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Goran N. Brajušković.

Additional information

Branković A. and Brajušković G. contributed equally to this work.

The research was supported by the Ministry of Education and Science of Serbia (Project no. 173016).

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Table S1

The primer sets used for amplification of the regions surrounding selected SNPs at 8q24 (DOC 34 kb)

Supplementary Table S2

PCR amplification profiles (DOC 26 kb)

Supplementary Table S3

Enzyme characteristics and lengths of digested PCR products (DOC 34 kb)

Supplementary Table S4

Association of SNPs rs1447295 and rs4242382 with prostate cancer progression under codominant, dominant and recessive genetic models assessed by the Pearson chi-square test (DOC 79 kb)

Supplementary Table S5

Association of SNPs rs7017300 and rs7837688 with prostate cancer progression under codominant, dominant and recessive genetic models assessed by the Pearson chi-square test (DOC 81 kb)

Supplementary Table S6

Association of the SNP rs6983267 with prostate cancer progression under codominant, dominant and recessive genetic models assessed by the Pearson chi-square test (DOC 64 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Branković, A.S., Brajušković, G.N., Mirčetić, J.D. et al. Common Variants at 8q24 are Associated with Prostate Cancer Risk in Serbian Population. Pathol. Oncol. Res. 19, 559–569 (2013). https://doi.org/10.1007/s12253-013-9617-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12253-013-9617-1

Keywords

Navigation