Skip to main content

Advertisement

Log in

D-Dimer as a Potential Prognostic Marker

  • Research
  • Published:
Pathology & Oncology Research

Abstract

Malignant tumors are often accompanied by increased risk for procoagulant activity, thrombosis and embolism. As a marker indicating such disturbancies is D-dimer, a product of fibrinolysis. In this retrospective study almost 300 patients with malignant tumors were evaluated. During LMWH treatment (as thromboprophylaxis) the highest frequency of VTE with worst prognosis occurred in pancreatic cancer (partly due to the late discovery) followed by ovarian, colonic and breast cancers. Also, increased D-dimer level correlated with progression (stages) and high mortality rate. Furthermore, D-dimer showed very similar or better prognostic activity than the clinically widely used classic tumor markers and suggested to use it as an additional value..

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CEA:

carcinoembryonic antigen

cP:

cancer procoagulant C

DD:

D-dimer

DVT:

deep vein thrombosis

LMWH:

low molecular weight heparin

PA:

plasminogen activator

PE:

pulmonal embolism

TF:

tissue factor

VTE:

venous thromboembolism

References

  1. Bouillard JB, Bouillaud S (1823) De l’Obliteration des veines et de son influence sur la formation des hydropisies partielles: consideration sur la hydropisies passive et general. Arch Gen Med 1:188–204

    Google Scholar 

  2. Trousseau A (1865) Phlegmasia alba dolens. Clinique Medicale de l’Hotel Dieu de Paris 3:654–712

    Google Scholar 

  3. Blom JW, Doggen CJ, Osanto S, Rosendaal FR (2005) malignancies, prothrombotic mutations, and the risk of venous thrombosis. JAMA 293:492–496

    Article  Google Scholar 

  4. Murchinson JT, Wylie L, Stockton DL (2004) Excess risk of cancer in patients with primary venous thromboembolism: a national, population-based cohort study. Br J Cancer 91:92–95

    Article  Google Scholar 

  5. Noble S, Pasi J (2010) Epidemiology and pathophysiology of cancer-associated thrombosis. Brit J Cancer 102:52–59

    Article  Google Scholar 

  6. Kakkar AK (2005) Low molecular weight heparin and survival in patients with malignant disease. Cancer Control 12:22–30

    PubMed  Google Scholar 

  7. Kakkar AK, Levine MN, Kadziola Z (2004) Low molecular weight heparin, therapy with deltaparin, and survival in advanced cancer: the fragmin advanced malignancy outcome study (FAMOUS). J Clin Oncol 22:1944–1948

    Article  PubMed  CAS  Google Scholar 

  8. Klerk CPW, Smorenburg SM, Otten H-M et al (2005) The effect of low molecular weight heparin on survivcal in patients with advanced malignancy. J Clin Oncol 23:2130–2135

    Article  PubMed  CAS  Google Scholar 

  9. Tóvári J, Berecky B, Gilly R et al (2004) Effect of heparin treatment on the metastatization of melanoma in a preclinical model (in Hungarian). Magyar Onkológia 48:235–241

    PubMed  Google Scholar 

  10. Lazo-Langer A, Gross GD, Spaans JN et al (2007) The effect of low-molecular-weight heparin on cancer survival. A systematic review and meta-analysis of randomized trial. Thromb Hemostasis 5:729–737

    Article  Google Scholar 

  11. Niers TMH, Brüggeman LW, Van Sluis GL et al (2009) Long-term thrombin inhibition promotes cancer cell extravasation in a mouse model of experimental metastasis. Internat Soc Thrombosis Haemostasis 7:1595–1597

    Article  CAS  Google Scholar 

  12. Mousa SA, Petersen LJ (2009) Anticancer properties of low-molecular-weight heparin: preclinical evidence. Thromb Haemost 102:258–267

    PubMed  CAS  Google Scholar 

  13. Borsig I (2010) Antimetastatic effect of heparins and modified heparins. Experimental evidence. Thrombosis Res 125(suppl 2):S66–S71

    Article  Google Scholar 

  14. Kenessey I, Simon E, Futosi K et al (2009) Antimigratory and antimetastatic effect of heparin-derived 4-18 unit oligosaccharides in a preclinical humanmelanoma metastasis model. Thromb Haemost 102:1265–1273

    PubMed  CAS  Google Scholar 

  15. Nadir Y, Brenner B (2010) Heparanase procoagulant effects and inhibition by heparins. Thromb Res 125(suppl 2):572–576

    Google Scholar 

  16. Kvolik S, Jukic M, Matijevic M et al (2010) An overview of coagulation disorders in cancer patients. Surg Oncol 29:e33–e46

    Article  Google Scholar 

  17. Khorana AA, Kunderer NM, Culakova E et al (2008) Development and validation of a predictive model for chemotherapy-associated thrombosis. Blood 111:4902–4907

    Article  PubMed  CAS  Google Scholar 

  18. Doormaal FF et al (2011) Randomized trial of the effect of the low molecular weight heparin nadroparin on survival in patients with cancer. J Clin Oncol 29:2701–2706

    Google Scholar 

  19. Zs N, Turcsik V, Gy B (2009) The effect of LMWH (Nadroparin) on Tumor progression. Pathol Oncol Res Path Oncol Res 15:689–692

    Google Scholar 

  20. Kulasingam V, Pavlou MR, Diamandis EP (2010) Integrating high-throughput technologies in the quest for effective biomarkers for ovarian cancer. Nature Cancer Rev 10:371–378

    Article  CAS  Google Scholar 

  21. Moore RG et al (2009) A novel multiple marker bioassay utilizing HE4 and CA125 for the prediction of ovarian cancer in patients with a pelvic mass. Gynecol Oncol 112:40–46

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zsuzsanna Nagy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nagy, Z., Horváth, O., Kádas, J. et al. D-Dimer as a Potential Prognostic Marker. Pathol. Oncol. Res. 18, 669–674 (2012). https://doi.org/10.1007/s12253-011-9493-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12253-011-9493-5

Keywords

Navigation