Skip to main content

p53 and Cyclooxygenase-2 Expression are Directly Associated with Cyclin D1 Expression in Radical Prostatectomy Specimens of Patients with Hormone-Naïve Prostate Cancer

Abstract

Prostate cancer (PCa) is a potentially curable disease when diagnosed in early stages and subsequently treated with radical prostatectomy (RP). However, a significant proportion of patients tend to relapse early, with the emergence of biochemical failure (BF) as an established precursor of progression to metastatic disease. Several candidate molecular markers have been studied in an effort to enhance the accuracy of existing predictive tools regarding the risk of BF after RP. We studied the immunohistochemical expression of p53, cyclooxygenase-2 (COX-2) and cyclin D1 in a cohort of 70 patients that underwent RP for early stage, hormone naïve PCa, with the aim of prospectively identifying any possible interrelations as well as correlations with known prognostic parameters such as Gleason score, pathological stage and time to prostate-specific antigen (PSA) relapse. We observed a significant (p = 0.003) prognostic role of p53, with high protein expression correlating with shorter time to BF (TTBF) in univariate analysis. Both p53 and COX-2 expression were directly associated with cyclin D1 expression (p = 0.055 and p = 0.050 respectively). High p53 expression was also found to be an independent prognostic factor (p = 0.023). Based on previous data and results provided by this study, p53 expression exerts an independent negative prognostic role in localized prostate cancer and could therefore be evaluated as a useful new molecular marker to be added in the set of known prognostic indicators of the disease. With respect to COX-2 and cyclin D1, further studies are required to elucidate their role in early prediction of PCa relapse after RP.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. Bostwick DG, Grignon DJ, Hammond ME et al (1999) Prognostic factors in prostate cancer. College of American pathologists consensus statement 1999. Arch Pathol Lab Med 124:995–1000

    Google Scholar 

  2. Brooks JD, Bova GS, Ewing CM et al (1996) An uncertain role for p53 gene alterations in human prostate cancers. Cancer Res 56:3814–3822

    PubMed  CAS  Google Scholar 

  3. Taylor D, Koch WM, Zahurak M et al (1999) Immunohistochemical detection of p53 protein accumulation in head and neck cancer: correlation with p53 gene alterations. Hum Pathol 30:1221–1225

    Article  PubMed  CAS  Google Scholar 

  4. Zha S, Yegnasubramanian V, Nelson WG et al (2004) Cyclooxygenases in cancer: progress and perspective. Cancer Lett 215:1–20

    Article  PubMed  CAS  Google Scholar 

  5. Pruthi RS, Derksen E, Gaston K (2003) Cyclooxygenase-2 as a potential target in the prevention and treatment of genitourinary tumors: a review. J Urol 169:2352–2359

    Article  PubMed  CAS  Google Scholar 

  6. Gupta S, Srivastava M, Ahmad N et al (2000) Over-expression of cyclooxygenase-2 in human prostate adenocarcinoma. Prostate 42:73–78

    Article  PubMed  CAS  Google Scholar 

  7. Yoshimura R, Sano H, Masuda C et al (2000) Expression of cyclooxygenase-2 in prostate carcinoma. Cancer 89:589–596

    Article  PubMed  CAS  Google Scholar 

  8. Lee LM, Pan CC, Cheng CJ et al (2001) Expression of cyclooxygenase-2 in prostate adenocarcinoma and benign prostatic hyperplasia. Anticancer Res 21:1291–1294

    PubMed  CAS  Google Scholar 

  9. Uotila P, Valve E, Martikainen P et al (2001) Increased expression of cyclooxygenase-2 and nitric oxide synthase-2 in human prostate cancer. Urol Res 29:23–28

    Article  PubMed  CAS  Google Scholar 

  10. Zang T, Sun F, Li Y (2001) Expression of COX-2 in prostatic cancer and benign prostatic hyperplasia. Zhonghua Wai Ke Za Zhi 39:702–703

    PubMed  CAS  Google Scholar 

  11. Edwards J, Mukherjee R, Munro AF et al (2004) HER2 and COX2 expression in human prostate cancer. Eur J Cancer 40:50–55

    Article  PubMed  CAS  Google Scholar 

  12. Denkert C, Thoma A, Niesporek S et al (2007) Overexpression of cyclooxygenase-2 in human prostate carcinoma and prostatic intraepithelial neoplasia-association with increased expression of Polo-like kinase-1. Prostate 67:361–369

    Article  PubMed  CAS  Google Scholar 

  13. Shappell SB, Manning S, Boeglin WE et al (2001) Alterations in lipoxygenase and cyclooxygenase-2 catalytic activity and mRNA expression in prostate carcinoma. Neoplasia 3:287–303

    Article  PubMed  CAS  Google Scholar 

  14. Bartkova J, Lukas J, Strauss M et al (1995) Cyclin D1 oncoprotein aberrantly accumulates in malignancies of diverse histogenesis. Oncogene 10:775–778

    PubMed  CAS  Google Scholar 

  15. Chen Y, Martinez LA, LaCava M et al (1998) Increased cell growth and tumorigenicity in human prostate LNCaP cells by overexpression to cyclin D1. Oncogene 16:1913–1920

    Article  PubMed  CAS  Google Scholar 

  16. Gumbiner LM, Gumerlock PH, Mack PC et al (1999) Overexpression of cyclin D1 is rare in human prostate carcinoma. Prostate 38:40–45

    Article  PubMed  CAS  Google Scholar 

  17. Shiraishi T, Watanabe M, Muneyuki T et al (1998) A clinicopathological study of p53, p21 (WAF1/CIP1) and cyclin D1 expression in human prostate cancers. Urol Int 61:90–94

    Article  PubMed  CAS  Google Scholar 

  18. Osman I, Yee H, Taneja SS et al (2004) Neutral endopeptidase protein expression and prognosis in localized prostate cancer. Clin Cancer Res 10:4096–4100

    Article  PubMed  CAS  Google Scholar 

  19. Brehm A, Miska EA, McCance DJ et al (1998) Retinoblastoma protein recruits histone deacetylase to repress transcription. Nature 391:597–601

    Article  PubMed  CAS  Google Scholar 

  20. Guardavaccaro D, Corrente G, Covone F et al (2000) Arrest of G(1)-S progression by the p53-inducible gene PC3 is Rb dependent and relies on the inhibition of cyclin D1 transcription. Mol Cell Biol 20:1797–1815

    Article  PubMed  CAS  Google Scholar 

  21. Rocha S, Martin AM, Meek DW et al (2003) p53 represses cyclin D1 transcription through down regulation of Bcl-3 and inducing increased association of the p52 NF-kappaB subunit with histone deacetylase 1. Mol Cell Biol 23:4713–4727

    Article  PubMed  CAS  Google Scholar 

  22. Agus DB, Cordon-Cardo C, Fox W et al (1999) Prostate cancer cell cycle regulators: response to androgen withdrawal and development of androgen independence. J Natl Cancer Inst 91:1869–1876

    Article  PubMed  CAS  Google Scholar 

  23. Narayanan BA, Narayanan NK, Davis L et al (2006) RNA interference-mediated cyclooxygenase-2 inhibition prevents prostate cancer cell growth and induces differentiation: modulation of neuronal protein synaptophysin, cyclin D1, and androgen receptor. Mol Cancer Ther 5:1117–1125

    Article  PubMed  CAS  Google Scholar 

  24. Subbaramaiah K, Altorki N, Chung WJ et al (1999) Inhibition of cyclooxygenase-2 gene expression by p53. J Biol Chem 274:10911–10915

    Article  PubMed  CAS  Google Scholar 

  25. Han JA, Kim JI, Ongusaha PP et al (2002) P53-mediated induction of Cox-2 counteracts p53- or genotoxic stress-induced apoptosis. EMBO J 21:5635–5644

    Article  PubMed  CAS  Google Scholar 

  26. Choi EM, Heo JI, Oh JY et al (2005) COX-2 regulates p53 activity and inhibits DNA damage-induced apoptosis. Biochem Biophys Res Commun 328:1107–1112

    Article  PubMed  CAS  Google Scholar 

  27. Bauer JJ, Sesterhenn IA, Mostofi KF et al (1995) p53 nuclear protein expression is an independent prognostic marker in clinically localized prostate cancer patients undergoing radical prostatectomy. Clin Cancer Res 1:1295–1300

    PubMed  CAS  Google Scholar 

  28. Shurbaji MS, Kalbfleisch JH, Thurmond TS (1995) Immunohistochemical detection of p53 protein as a prognostic indicator in prostate cancer. Hum Pathol 26:106–109

    Article  PubMed  CAS  Google Scholar 

  29. Bauer JJ, Sesterhenn IA, Mostofi FK et al (1996) Elevated levels of apoptosis regulator proteins p53 and bcl-2 are independent prognostic biomarkers in surgically treated clinically localized prostate cancer. J Urol 156:1511–1516

    Article  PubMed  CAS  Google Scholar 

  30. Moul JW, Bettencourt MC, Sesterhenn IA et al (1996) Protein expression of p53, bcl-2, and KI-67 (MIB-1) as prognostic biomarkers in patients with surgically treated, clinically localized prostate cancer. Surgery 120:159–166

    Article  PubMed  CAS  Google Scholar 

  31. Theodorescu D, Broder SR, Boyd JC et al (1997) P53, bcl-2 and retinoblastoma proteins as long-term prognostic markers in localized carcinoma of the prostate. J Urol 158:131–137

    Article  PubMed  CAS  Google Scholar 

  32. Brewster SF, Oxley JD, Trivella M et al (1999) Preoperative p53, bcl-2, CD44 and E-cadherin immunohistochemistry as predictors of biochemical relapse after radical prostatectomy. J Urol 161:1238–1243

    Article  PubMed  CAS  Google Scholar 

  33. Osman I, Drobnjak M, Fazzari M et al (1999) Inactivation of the p53 pathway in prostate cancer: impact on tumor progression. Clin Cancer Res 5:2082–2088

    PubMed  CAS  Google Scholar 

  34. Leibovich BC, Cheng L, Weaver AL et al (2000) Outcome prediction with p53 immunostaining after radical prostatectomy in patients with locally advanced prostate cancer. J Urol 163:1756–1760

    Article  PubMed  CAS  Google Scholar 

  35. Deliveliotis C, Skolarikos A, Karayannis A et al (2003) The prognostic value of p53 and DNA ploidy following radical prostatectomy. World J Urol 21:171–176

    Article  PubMed  CAS  Google Scholar 

  36. Schlomm T, Iwers L, Kirstein P et al (2008) Clinical significance of p53 alterations in surgically treated prostate cancers. Mod Pathol 21:1371–1378

    Article  PubMed  CAS  Google Scholar 

  37. Oxley JD, Winkler MH, Parry K et al (2002) P53 and bcl-2 immunohistochemistry in preoperative biopsies as predictors of biochemical recurrence after radical prostatectomy. BJU Int 89:27–32

    Article  PubMed  CAS  Google Scholar 

  38. Revelos K, Petraki C, Gregorakis A et al (2005) Immunohistochemical expression of Bcl2 is an independent predictor of time-to-biochemical failure in patients with clinically localized prostate cancer following radical prostatectomy. Anticancer Res 25:3123–3133

    PubMed  CAS  Google Scholar 

  39. Yang G, Stapleton AM, Wheeler TM et al (1996) Clustered p53 immunostaining: a novel pattern associated with prostate cancer progression. Clin Cancer Res 2:399–401

    PubMed  CAS  Google Scholar 

  40. Stapleton AM, Zbell P, Kattan MW et al (1998) Assessment of the biologic markers p53, Ki-67, and apoptotic index as predictive indicators of prostate carcinoma recurrence after surgery. Cancer 82:168–175

    Article  PubMed  CAS  Google Scholar 

  41. Quinn DI, Henshall SM, Head DR et al (2000) Prognostic significance of p53 nuclear accumulation in localized prostate cancer treated with radical prostatectomy. Cancer Res 60:1585–1594

    PubMed  CAS  Google Scholar 

  42. Inoue T, Segawa T, Shiraishi T et al (2005) Androgen receptor, Ki67, and p53 expression in radical prostatectomy specimens predict treatment failure in Japanese population. Urology 66:332–337

    Article  PubMed  Google Scholar 

  43. Wu TT, Hsu YS, Wang JS et al (2003) The role of p53, bcl-2 and E-cadherin expression in predicting biochemical relapse for organ confined prostate cancer in Taiwan. J Urol 170:78–81

    Article  PubMed  CAS  Google Scholar 

  44. Goto T, Nguyen BP, Nakano M et al (2008) Utility of Bcl-2, P53, Ki-67, and caveolin-1 immunostaining in the prediction of biochemical failure after radical prostatectomy in a Japanese population. Urology 72:167–171

    Article  PubMed  Google Scholar 

  45. Nariculam J, Freeman A, Bott S et al (2009) Utility of tissue microarrays for profiling prognostic biomarkers in clinically localized prostate cancer: the expression of BCL-2, E-cadherin, Ki-67 and p53 as predictors of biochemical failure after radical prostatectomy with nested control for clinical and pathological risk factors. Asian J Androl 11:109–118

    Article  PubMed  CAS  Google Scholar 

  46. Krupski T, Petroni GR, Frierson HF Jr et al (2000) Microvessel density, p53, retinoblastoma, and chromogranin A immunohistochemistry as predictors of disease-specific survival following radical prostatectomy for carcinoma of the prostate. Urology 55:743–749

    Article  PubMed  CAS  Google Scholar 

  47. Leibovich BC, Cheng L, Weaver AL et al (2000) Outcome prediction with p53 immunostaining after radical prostatectomy in patients with locally advanced prostate cancer. J Urol 163:1756–1760

    Article  PubMed  CAS  Google Scholar 

  48. Visakorpi T, Kallioniemi OP, Heikkinen A et al (1992) Small subgroup of aggressive, highly proliferative prostatic carcinomas defined by p53 accumulation. J Natl Cancer Inst 84:883–887

    Article  PubMed  CAS  Google Scholar 

  49. Deliveliotis C, Skolarikos A, Karayannis A et al (2003) The prognostic value of p53 and DNA ploidy following radical prostatectomy. World J Urol 21:171–176

    Article  PubMed  CAS  Google Scholar 

  50. Kirschenbaum A, Klausner AP, Lee R et al (2000) Expression of cyclooxygenase-1 and cyclooxygenase-2 in the human prostate. Urology 56:671–676

    Article  PubMed  CAS  Google Scholar 

  51. Zha S, Gage WR, Sauvageot J et al (2001) Cyclooxygenase-2 is up-regulated in proliferative inflammatory atrophy of the prostate, but not in prostate carcinoma. Cancer Res 61:8617–8623

    PubMed  CAS  Google Scholar 

  52. Wang W, Bergh A, Damber JE (2005) Cyclooxygenase-2 expression correlates with local chronic inflammation and tumor neovascularization in human prostate cancer. Clin Cancer Res 11:3250–3256

    Article  PubMed  CAS  Google Scholar 

  53. Dassesse T, de Leval X, de Leval L et al (2006) Activation of the thromboxane A2 pathway in human prostate cancer correlates with tumor Gleason score and pathologic stage. Eur Urol 50:1021–1031

    Article  PubMed  CAS  Google Scholar 

  54. Di Lorenzo G, De Placido S, Autorino R et al (2005) Expression of biomarkers modulating prostate cancer progression: implications in the treatment of the disease. Prostate Cancer Prostatic Dis 8:54–59

    Article  PubMed  Google Scholar 

  55. Rubio J, Ramos D, López-Guerrero JA et al (2005) Immunohistochemical expression of Ki-67 antigen, cox-2 and Bax/Bcl-2 in prostate cancer; prognostic value in biopsies and radical prostatectomy specimens. Eur Urol 48:745–751

    Article  PubMed  CAS  Google Scholar 

  56. Rao DS, Gui D, Koski ME et al (2006) An inverse relation between COX-2 and E-cadherin expression correlates with aggressive histologic features in prostate cancer. Appl Immunohistochem Mol Morphol 14:375–383

    Article  PubMed  CAS  Google Scholar 

  57. Cohen BL, Gomez P, Omori Y et al (2006) Cyclooxygenase-2 (COX-2) expression is an independent predictor of prostate cancer recurrence. Int J Cancer 119:1082–1087

    Article  PubMed  CAS  Google Scholar 

  58. Bin W, He W, Feng Z, et al (2009) Prognostic relevance of cyclooxygenase-2 (COX-2) expression in Chinese patients with prostate cancer. Acta Histochem (in press). doi:10.1016/j.acthis.2009.09.004

  59. Comstock CE, Revelo MP, Buncher CR et al (2007) Impact of differential cyclin D1 expression and localisation in prostate cancer. Br J Cancer 96:970–979

    Article  PubMed  CAS  Google Scholar 

  60. Kallakury BV, Sheehan CE, Ambros RA et al (1997) The prognostic significance of p34cdc2 and cyclin D1 protein expression in prostate adenocarcinoma. Cancer 80:753–763

    Article  PubMed  CAS  Google Scholar 

  61. Drobnjak M, Osman I, Scher HI et al (2000) Overexpression of cyclin D1 is associated with metastatic prostate cancer to bone. Clin Cancer Res 6:1891–1895

    PubMed  CAS  Google Scholar 

  62. Aaltomaa S, Kärjä V, Lipponen P et al (2006) Expression of Ki-67, cyclin D1 and apoptosis markers correlated with survival in prostate cancer patients treated by radical prostatectomy. Anticancer Res 26:4873–4878

    PubMed  CAS  Google Scholar 

  63. Gannon PO, Koumakpayi IH, Le Page C et al (2008) Ebp1 expression in benign and malignant prostate. Cancer Cell Int 8:18–28

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors declare that there is no conflict of interest related to this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Panagiotis J. Vlachostergios.

Additional information

Panagiotis J. Vlachostergios and Foteini Karasavvidou contributed equally to this work.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Vlachostergios, P.J., Karasavvidou, F., Patrikidou, A. et al. p53 and Cyclooxygenase-2 Expression are Directly Associated with Cyclin D1 Expression in Radical Prostatectomy Specimens of Patients with Hormone-Naïve Prostate Cancer. Pathol. Oncol. Res. 18, 245–252 (2012). https://doi.org/10.1007/s12253-011-9435-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12253-011-9435-2

Keywords

  • p53
  • Cyclooxygenase-2
  • Cyclin D1
  • Radical prostatectomy
  • Prostate cancer
  • Biochemical failure