Skip to main content

Advertisement

Log in

The Role of the Bone Marrow Derived Mesenchymal Stem Cells in Colonic Epithelial Regeneration

  • Published:
Pathology & Oncology Research

Abstract

Bone marrow derived mesenchymal stem cells (BM-MSCs) take part in the colonic mucosal regeneration. They are multipotent cells, which can be identified with both negative (i.e. CD13, CD 14, CD45, c-Kit, major histocompatibility complex /MHC class I and II) and positive (i.e. CD54 (ICAM1), CD133, CD146 (MCAM), CD166, Flk-1, Sca-1, Thy-1, stage-specific antigen I /SSEA-I and Musashi-1, HLA class I) markers. These cells can repopulate the gastrointestinal mucosa as they may differentiate into stromal- (i.e. myofi-broblast) or epithelial-like (Paneth-, epithel-, goblet or enteroendocrin) cells without proliferation. During the mesenchymal to epithelial transition (MET) stem cells enter the epithelial layer and take up epithelial cell-like properties. Rarely BM-MSCs may retain their stem cell characteristics and are capable of producing progeny. The isolated lymphoid aggregates may serve as a platform from where BM-MSCs migrate to the nearby crypts as mediated by several chemoattractant proteins, which are expressed in injured tissue. The number of BM-MSCs is influenced by the degree of inflammation. In this review we summarize the current information about the role of BM-MSCs in the repair progress of injured colonic epithelium and their potential clinical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Grove JE, Bruscia E, Krause DS (2004) Plasticity of bone marrow-derived stem cells. Stem Cells 22:487–500

    Article  PubMed  Google Scholar 

  2. Potten CS, Loeffler M (1990) Stem cells: attributes, cycles, spirals, pitfalls and uncertainties. Lessons for and from the crypt. Development 110:1001–1020

    PubMed  CAS  Google Scholar 

  3. Matsumoto T, Okamoto R, Yajima T et al (2005) Increase of bone marrow-derived secretory lineage epithelial cells during regeneration in the human intestine. Gastroenterology 128:1851–1867

    Article  PubMed  CAS  Google Scholar 

  4. Brittan M, Wright NA (2004) Stem cell in gastrointestinal structure and neoplastic development. Gut 53:899–910

    Article  PubMed  CAS  Google Scholar 

  5. Tanaka F, Tominaga K, Ochi M et al (2008) Exogenous administration of mesenchymal stem cells ameliorates dextran sulfate sodium-induced colitis via anti-inflammatory action in damaged tissue in rats. Life Sci 83:771–779

    Article  PubMed  CAS  Google Scholar 

  6. Wei Y, Nie Y, Lai J et al (2009) Comparison of the population capacity of hematopoietic and mesenchymal stem cells in experimental colitis rat model. Transplantation 88:42–48

    Article  PubMed  Google Scholar 

  7. De Wever O, Demetter P, Mareel M et al (2008) Stromal myofibroblasts are drivers of invasive cancer growth. Int J Cancer 123:2229–2238

    Article  PubMed  Google Scholar 

  8. Brittan M, Hunt T, Jeffery R et al (2002) Bone marrow derivation of pericryptal myofibroblasts in the mouse and human small intestine and colon. Gut 50:752–757

    Article  PubMed  CAS  Google Scholar 

  9. Barry FP, Murphy JM (2004) Mesenchymal stem cells: clinical applications and biological characterization. Int J Biochem Cell Biol 36:568–584

    Article  PubMed  CAS  Google Scholar 

  10. Spees JL, Olson SD, Ylostalo J et al (2003) Differentiation, cell fusion, and nuclear fusion during ex vivo repair of epithelium by human adult stem cells from bone marrow stroma. Proc Natl Acad Sci U S A 100:2397–2402

    Article  PubMed  CAS  Google Scholar 

  11. Minguell JJ, Erices A, Conget P (2001) Mesenchymal stem cells. Exp Biol Med (Maywood) 226:507–520

    CAS  Google Scholar 

  12. Patel SA, Sherman L, Munoz J et al (2008) Immunological properties of mesenchymal stem cells and clinical implications. Arch Immunol Ther Exp (Warsz) 56:1–8

    Article  CAS  Google Scholar 

  13. Jiang Y, Jahagirdar BN, Reinhardt RL et al (2002) Pluripotency of mesenchymal stem cells derived from adult marrow. Nature 418:41–49

    Article  PubMed  CAS  Google Scholar 

  14. Kassem M, Kristiansen M, Abdallah BM (2004) Mesenchymal stem cells: cell biology and potential use in therapy. Basic Clin Pharmacol Toxicol 95:209–214

    Article  PubMed  CAS  Google Scholar 

  15. Matsumoto T, Okamoto R, Yajima T et al (2005) Increase of bone marrow-derived secretory lineage epithelial cells during regeneration in the human intestine. Gastroenterology 128:1851–1867

    Article  PubMed  CAS  Google Scholar 

  16. Phinney DG, Prockop DJ (2007) Concise review: mesenchymal stem/multipotent stromal cells: the state of transdifferentiation and modes of tissue repair current views. Stem Cells 25:2896–2902

    Article  PubMed  Google Scholar 

  17. Pittenger MF, Mackay AM, Beck SC et al (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284:143–147

    Article  PubMed  CAS  Google Scholar 

  18. Baksh D, Yao R, Tuan RS (2007) Comparison of proliferative and multilineage differentiation potential of human mesenchymal stem cells derived from umbilical cord and bone marrow. Stem Cells 25:1384–1392

    Article  PubMed  CAS  Google Scholar 

  19. Haasters F, Prall WC, Anz D et al (2009) Morphological and immunocytochemical characteristics indicate the yield of early progenitors and represent a quality control for human mesenchymal stem cell culturing. J Anat 214:759–767

    Article  PubMed  Google Scholar 

  20. Mansilla E, Marín GH, Drago H et al (2006) Bloodstream cells phenotypically identical to human mesenchymal bone marrow stem cells circulate in large amounts under the influence of acute large skin damage: new evidence for their use in regenerative medicine. Transplant Proc 38:967–969

    Article  PubMed  CAS  Google Scholar 

  21. Gargett CE, Schwab KE, Zillwood RM et al (2009) Isolation and culture of epithelial progenitors and mesenchymal stem cells from human endometrium. Biol Reprod 80:1136–1145

    Article  PubMed  CAS  Google Scholar 

  22. Satija NK, Gurudutta GU, Sharma S et al (2007) Mesenchymal stem cells: molecular targets for tissue engineering. Stem Cells Dev 16:7–23

    Article  PubMed  CAS  Google Scholar 

  23. Leedham SJ, Brittan M, McDonald SA et al (2005) Intestinal stem cells. J Cell Mol Med 9:11–24

    Article  PubMed  CAS  Google Scholar 

  24. Chamberlain G, Fox J, Ashton B et al (2007) Concise review: mesenchymal stem cells: their phenotype, differentiation capacity, immunological features, and potential for homing. Stem Cells 25:2739–2749

    Article  PubMed  CAS  Google Scholar 

  25. Okamoto R, Yajima T, Yamazaki M et al (2002) Damaged epithelia regenerated by bone marrow-derived cells in the human gastrointestinal tract. Nat Med 8:1011–1017

    Article  PubMed  CAS  Google Scholar 

  26. Li C, Kong Y, Wang H et al (2009) Homing of bone marrow mesenchymal stem cells mediated by sphingosine 1-phosphate contributes to liver fibrosis. J Hepatol 50:1174–1183

    Article  PubMed  CAS  Google Scholar 

  27. Liu ZJ, Zhuge Y, Velazquez OC (2009) Trafficking and differentiation of mesenchymal stem cells. J Cell Biochem 106:984–991

    Article  PubMed  CAS  Google Scholar 

  28. Liu N, Chen R, Du H et al (2009) Expression of IL-10 and TNF-alpha in rats with cerebral infarction after transplantation with mesenchymal stem cells. Cell Mol Immunol 6:207–213

    Article  PubMed  Google Scholar 

  29. Kim YS, Park HJ, Hong MH et al (2009) TNF-alpha enhances engraftment of mesenchymal stem cells into infarcted myocardium. Front Biosci 14:2845–2856

    Article  PubMed  CAS  Google Scholar 

  30. Yabana T, Arimura Y, Tanaka H et al (2009) Enhancing epithelial engraftment of rat mesenchymal stem cells restores epithelial barrier integrity. J Pathol 218:350–359

    Article  PubMed  CAS  Google Scholar 

  31. Komori M, Tsuji S, Tsujii M et al (2005) Involvement of bone marrow-derived cells in healing of experimental colitis in rats. Wound Repair Regen 13:109–118

    Article  PubMed  Google Scholar 

  32. Emura M, Ochiai A, Horino M et al (2000) Development of myofibroblasts from human bone marrow mesenchymal stem cells cocultured with human colon carcinoma cells and TGF beta 1. In Vitro Cell Dev Biol Anim 36:77–80

    Article  PubMed  CAS  Google Scholar 

  33. Brenmoehl J, Miller SN, Hofmann C et al (2009) Transforming growth factor-beta 1 induces intestinal myofibroblast differentiation and modulates their migration. World J Gastroenterol 15:1431–1442

    Article  PubMed  CAS  Google Scholar 

  34. Beck PL, Rosenberg IM, Xavier RJ et al (2003) Transforming growth factor-beta mediates intestinal healing and susceptibility to injury in vitro and in vivo through epithelial cells. Am J Pathol 162:597–608

    Article  PubMed  CAS  Google Scholar 

  35. Roufosse CA, Direkze NC, Otto WR et al (2004) Circulating mesenchymal stem cells. Int J Biochem Cell Biol 36:585–597

    Article  PubMed  CAS  Google Scholar 

  36. Andoh A, Bamba S, Fujiyama Y et al (2005) Colonic subepithelial myofibroblasts in mucosal inflammation and repair: contribution of bone marrow-derived stem cells to the gut regenerative response. J Gastroenterol 40:1089–1099

    Article  PubMed  Google Scholar 

  37. Brittan M, Chance V, Elia G et al (2005) A regenerative role for bone marrow following experimental colitis: contribution to neovasculogenesis and myofibroblasts. Gastroenterology 128:1984–1995

    Article  PubMed  Google Scholar 

  38. Powell DW, Mifflin RC, Valentich JD et al (1999) Myofibroblasts. I. Paracrine cells important in health and disease. Am J Physiol 277:1–9

    Google Scholar 

  39. Powell DW, Mifflin RC, Valentich JD et al (1999) Myofibroblasts. II. Intestinal subepithelial myofibroblasts. Am J Physiol 277:183–201

    Google Scholar 

  40. Baum B, Settleman J, Quinlan MP (2008) Transitions between epithelial and mesenchymal states in development and disease. Semin Cell Dev Biol 19:294–308

    Article  PubMed  CAS  Google Scholar 

  41. Saxena SK, Thompson JS, Sharp JG (1997) Role of organized intestinal lymphoid aggregates in intestinal regeneration. J Invest Surg 10:97–103

    Article  PubMed  CAS  Google Scholar 

  42. Chugh AR, Zuba-Surma EK, Dawn B (2009) Bone marrow-derived mesenchymal stems cells and cardiac repair. Minerva Cardioangiol 57:185–202

    PubMed  CAS  Google Scholar 

  43. Sugaya K, Merchant S (2008) How to approach Alzheimer’s disease therapy using stem cell technologies. J Alzheimers Dis 15:241–254

    PubMed  CAS  Google Scholar 

  44. Le Visage C, Dunham B, Flint P et al (2004) Coculture of mesenchymal stem cells and respiratory epithelial cells to engineer a human composite respiratory mucosa. Tissue Eng 10:1426–1435

    PubMed  Google Scholar 

  45. Powell DW, Adegboyega PA, Di Mari JF et al (2005) Epithelial cells and their neighbors I. Role of intestinal myofibroblasts in development, repair, and cancer. Am J Physiol Gastrointest Liver Physiol 289:2–7

    Article  Google Scholar 

  46. Rubio D, Garcia S, De la Cueva T et al (2008) Human mesenchymal stem cell transformation is associated with a mesenchymal-epithelial transition. Exp Cell Res 314:691–698

    Article  PubMed  CAS  Google Scholar 

  47. Houghton J, Wang TC (2005) Helicobacter pylori and gastric cancer: a new paradigm for inflammation-associated epithelial cancers. Gastroenterology 128:1567–1578

    Article  PubMed  CAS  Google Scholar 

  48. Panés J, Salas A (2009) Mechanisms underlying the beneficial effects of stem cell therapies for inflammatory bowel diseases. Gut 58:898–900

    Article  PubMed  Google Scholar 

  49. Khalil PN, Weiler V, Nelson PJ et al (2007) Nonmyeloablative stem cell therapy enhances microcirculation and tissue regeneration in murine inflammatory bowel disease. Gastroenterology 132:944–954

    Article  PubMed  Google Scholar 

  50. Asari S, Itakura S, Ferreri K et al (2009) Mesenchymal stem cells suppress B-cell terminal differentiation. Exp Hematol 37:604–615

    Article  PubMed  CAS  Google Scholar 

  51. Ringdén O, Uzunel M, Rasmusson I et al (2006) Mesenchymal stem cells for treatment of therapy-resistant graft-versus-host disease. Transplantation 81:1390–1397

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gábor Valcz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Valcz, G., Krenács, T., Sipos, F. et al. The Role of the Bone Marrow Derived Mesenchymal Stem Cells in Colonic Epithelial Regeneration. Pathol. Oncol. Res. 17, 11–16 (2011). https://doi.org/10.1007/s12253-010-9262-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12253-010-9262-x

Keywords

Navigation