Skip to main content

Advertisement

Log in

Immunohistochemical Detection of Phospho-Akt, Phospho-BAD, HER2 and Oestrogen Receptors α and β in Malaysian Breast Cancer Patients

  • Published:
Pathology & Oncology Research

Abstract

Activation of Akt signaling pathway has been documented in various human malignancies, including breast carcinoma. The objective of this study is to determine the incidence of Akt phosphorylation in breast tumours and its relationship with expression of ER-α, ER-β, HER2, Ki-67 and phosphorylated Bcl-2 associated death domain (p-BAD). Immunohistochemical staining was performed to detect these molecules on 43 paraffin-embedded breast tumour tissues with commercially available antibodies. Eighteen (41.9%), 3 (7.0%), 23 (53.5%), 35 (81.4%), 21 (48.8%), 29 (67.4%), and 34 (81.0%) of breast tumours were positive for nuclear ER-α, nuclear ER-β, membranous HER2, cytonuclear p-Akt (Thr308), p-Akt (Ser473), p-BAD and Ki-67, respectively. ER-α expression was inversely correlated with HER2 and Ki-67 (P = 0.041 and P = 0.040, respectively). The p-Akt (Ser473) was correlated with increased level of p-BAD (Ser136) (P = 0.012). No relationship of Akt phosphorylation with HER2, ER-α or ER-β was found. The p-Akt (Ser473) immunoreactivity was significantly higher in stage IV than in stage I or II (P = 0.036 or P = 0.009). The higher Ki-67 and lower ER-α expression showed an association with patient age of <50 years (P = 0.004) and with positive nodal status (P = 0.033), respectively. Our data suggest that the Akt phosphorylation and inactivation of its downstream target, BAD may play a role in survival of breast cancer cell. This study does not support the simple model of linear HER2/PI3K/Akt pathway in breast cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Lim GCC, Halimah Y (2004) Second report of the national cancer registry: cancer incidence in Malaysia 2003. National Cancer Registry, Malaysia

    Google Scholar 

  2. Clarke R, Skaar T, Leonessa F et al (1996) Acquisition of an antiestrogen-resistant phenotype in breast cancer: role of cellular and molecular mechanisms. Cancer Treat Res 87:263–283

    CAS  PubMed  Google Scholar 

  3. Ring A, Dowsett M (2004) Mechanisms of tamoxifen resistance. Endocr Relat Cancer 11:643–658

    Article  CAS  PubMed  Google Scholar 

  4. Pandolfi PP (2004) Breast cancer—loss of PTEN predicts resistance to treatment. N Engl J Med 351:2337–2338

    Article  CAS  PubMed  Google Scholar 

  5. Tokunaga E, Kataoka A, Kimura Y et al (2006) The association between Akt activation and resistance to hormone therapy in metastatic breast cancer. Eur J Cancer 42:629–635

    Article  CAS  PubMed  Google Scholar 

  6. Brognard J, Clark AS, Ni Y et al (2001) Akt/protein kinase B is constitutively active in non-small cell lung cancer cells and promotes cellular survival and resistance to chemotherapy and radiation. Cancer Res 61:3986–3997

    CAS  PubMed  Google Scholar 

  7. Clark AS, West K, Streicher S et al (2002) Constitutive and inducible Akt activity promotes resistance to chemotherapy, trastuzumab, or tamoxifen in breast cancer cells. Mol Cancer Ther 1:707–717

    CAS  PubMed  Google Scholar 

  8. Luo Y, Shoemaker AR, Liu X et al (2005) Potent and selective inhibitors of Akt kinases slow the progress of tumors in vivo. Mol Cancer Ther 4:977–986

    Article  CAS  PubMed  Google Scholar 

  9. Kondapaka SB, Singh SS, Dasmahapatra GP et al (2003) Perifosine, a novel alkylphospholipid, inhibits protein kinase B activation. Mol Cancer Ther 2:1093–1103

    CAS  PubMed  Google Scholar 

  10. Jones PF, Jakubowicz T, Hemmings BA (1991) Molecular cloning of a second form of rac protein kinase. Cell Regul 2:1001–1009

    CAS  PubMed  Google Scholar 

  11. Bellacosa A, Kumar CC, Di Cristofano A et al (2005) Activation of AKT kinases in cancer: implications for therapeutic targeting. Adv Cancer Res 94:29–86

    Article  CAS  PubMed  Google Scholar 

  12. Masure S, Haefner B, Wesselink JJ et al (1999) Molecular cloning, expression and characterization of the human serine/threonine kinase Akt-3. Eur J Biochem 265:353–360

    Article  CAS  PubMed  Google Scholar 

  13. Cheng JQ, Godwin AK, Bellacosa A et al (1992) AKT2, a putative oncogene encoding a member of a subfamily of protein-serine/threonine kinases, is amplified in human ovarian carcinomas. Proc Natl Acad Sci U S A 89:9267–9271

    Article  CAS  PubMed  Google Scholar 

  14. Alessi DR, James SR, Downes CP et al (1997) Characterization of a 3-phosphoinositide-dependent protein kinase which phosphorylates and activates protein kinase Balpha. Curr Biol 7:261–269

    Article  CAS  PubMed  Google Scholar 

  15. Stephens L, Anderson K, Stokoe D et al (1998) Protein kinase B kinases that mediate phosphatidylinositol 3, 4, 5-trisphosphate-dependent activation of protein kinase B. Science 279:710–714

    Article  CAS  PubMed  Google Scholar 

  16. Sarbassov DD, Guertin DA, Ali SM et al (2005) Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science 307:1098–1101

    Article  CAS  PubMed  Google Scholar 

  17. Hresko RC, Mueckler M (2005) mTOR.RICTOR is the Ser473 kinase for Akt/protein kinase B in 3T3-L1 adipocytes. J Biol Chem 280:40406–40416

    Article  CAS  PubMed  Google Scholar 

  18. Dimmeler S, Fleming I, Fisslthaler B et al (1999) Activation of nitric oxide synthase in endothelial cells by Akt-dependent phosphorylation. Nature 399:601–605

    Article  CAS  PubMed  Google Scholar 

  19. Nakanishi K, Sakamoto M, Yasuda J et al (2002) Critical involvement of the phosphatidylinositol 3-kinase/Akt pathway in anchorage-independent growth and hematogeneous intrahepatic metastasis of liver cancer. Cancer Res 62:2971–2975

    CAS  PubMed  Google Scholar 

  20. Altomare DA, Testa JR (2005) Perturbations of the AKT signaling pathway in human cancer. Oncogene 24:7455–7464

    Article  CAS  PubMed  Google Scholar 

  21. Wu Y, Mohamed H, Chillar R et al (2008) Clinical significance of Akt and HER2/neu overexpression in African–American and Latina women with breast cancer. Breast Cancer Res 10:R3

    Article  PubMed  Google Scholar 

  22. Lazennec G, Bresson D, Lucas A et al (2001) ER beta inhibits proliferation and invasion of breast cancer cells. Endocrinology 142:4120–4130

    Article  CAS  PubMed  Google Scholar 

  23. Rajnakova A, Goh PM, Chan ST et al (1997) Expression of differential nitric oxide synthase isoforms in human normal gastric mucosa and gastric cancer tissue. Carcinogenesis 18:1841–1845

    Article  CAS  PubMed  Google Scholar 

  24. Endo K, Terada T (2000) Protein expression of CD44 (standard and variant isoforms) in hepatocellular carcinoma: relationships with tumor grade, clinicopathologic parameters, p53 expression, and patient survival. J Hepatol 32:78–84

    Article  CAS  PubMed  Google Scholar 

  25. Allred DC, Harvey JM, Berardo M et al (1998) Prognostic and predictive factors in breast cancer by immunohistochemical analysis. Mod Pathol 11:155–168

    CAS  PubMed  Google Scholar 

  26. Cobleigh MA, Vogel CL, Tripathy D et al (1999) Multinational study of the efficacy and safety of humanized anti-HER2 monoclonal antibody in women who have HER2-overexpressing metastatic breast cancer that has progressed after chemotherapy for metastatic disease. J Clin Oncol 17:2639–2648

    CAS  PubMed  Google Scholar 

  27. Scheid MP, Marignani PA, Woodgett JR (2002) Multiple phosphoinositide 3-kinase-dependent steps in activation of protein kinase B. Mol Cell Biol 22:6247–6260

    Article  CAS  PubMed  Google Scholar 

  28. Nadji M, Gomez-Fernandez C, Ganjei-Azar P et al (2005) Immunohistochemistry of estrogen and progesterone receptors reconsidered: experience with 5,993 breast cancers. Am J Clin Pathol 123:21–27

    Article  PubMed  Google Scholar 

  29. Looi LM, Cheah PL (1998) C-erbB-2 oncoprotein amplification in infiltrating ductal carcinoma of breast relates to high histological grade and loss of oestrogen receptor protein. Malays J Pathol 20:19–23

    CAS  PubMed  Google Scholar 

  30. Pavao M, Traish AM (2001) Estrogen receptor antibodies: specificity and utility in detection, localization and analyses of estrogen receptor alpha and beta. Steroids 66:1–16

    Article  CAS  PubMed  Google Scholar 

  31. Speirs V, Green CA, Shaaban AM (2008) Oestrogen receptor beta immunohistochemistry: time to get it right? J Clin Pathol 61:1150–1151 author reply 1151-2

    CAS  PubMed  Google Scholar 

  32. Rhodes A, Jasani B, Balaton AJ et al (2000) Frequency of oestrogen and progesterone receptor positivity by immunohistochemical analysis in 7016 breast carcinomas: correlation with patient age, assay sensitivity, threshold value, and mammographic screening. J Clin Pathol 53:688–696

    Article  CAS  PubMed  Google Scholar 

  33. Slamon DJ, Godolphin W, Jones LA et al (1989) Studies of the HER-2/neu proto-oncogene in human breast and ovarian cancer. Science 244:707–712

    Article  CAS  PubMed  Google Scholar 

  34. Chariyalertsak S, Chariyalertsak S, Cheirsilpa A et al (1996) Immunohistochemical detection of c-erbB-2 oncoprotein in patients with breast cancer. J Med Assoc Thail 79:715–721

    CAS  Google Scholar 

  35. Almasri NM, Al Hamad M (2005) Immunohistochemical evaluation of human epidermal growth factor receptor 2 and estrogen and progesterone receptors in breast carcinoma in Jordan. Breast Cancer Res 7:R598–R604

    Article  CAS  PubMed  Google Scholar 

  36. Rosa FE, Caldeira JR, Felipes J et al (2008) Evaluation of estrogen receptor alpha and beta and progesterone receptor expression and correlation with clinicopathologic factors and proliferative marker Ki-67 in breast cancers. Hum Pathol 39:720–730

    Article  CAS  PubMed  Google Scholar 

  37. Jarzabek K, Koda M, Kozlowski L et al (2005) Distinct mRNA, protein expression patterns and distribution of oestrogen receptors alpha and beta in human primary breast cancer: correlation with proliferation marker Ki-67 and clinicopathological factors. Eur J Cancer 41:2924–2934

    Article  CAS  PubMed  Google Scholar 

  38. Finlin BS, Gau CL, Murphy GA et al (2001) RERG is a novel ras-related, estrogen-regulated and growth-inhibitory gene in breast cancer. J Biol Chem 276:42259–42267

    Article  CAS  PubMed  Google Scholar 

  39. Guo S, Sonenshein GE (2004) Forkhead box transcription factor FOXO3a regulates estrogen receptor alpha expression and is repressed by the Her-2/neu/phosphatidylinositol 3-kinase/Akt signaling pathway. Mol Cell Biol 24:8681–8690

    Article  CAS  PubMed  Google Scholar 

  40. Fuqua SA, Schiff R, Parra I et al (2003) Estrogen receptor beta protein in human breast cancer: correlation with clinical tumor parameters. Cancer Res 63:2434–2439

    CAS  PubMed  Google Scholar 

  41. Skliris GP, Munot K, Bell SM et al (2003) Reduced expression of oestrogen receptor beta in invasive breast cancer and its re-expression using DNA methyl transferase inhibitors in a cell line model. J Pathol 201:213–220

    Article  CAS  PubMed  Google Scholar 

  42. Fox EM, Davis RJ, Shupnik MA (2008) ERbeta in breast cancer—onlooker, passive player, or active protector? Steroids 73:1039–1051

    Article  CAS  PubMed  Google Scholar 

  43. Al-Bazz YO, Underwood JC, Brown BL et al (2009) Prognostic significance of Akt, phospho-Akt and BAD expression in primary breast cancer. Eur J Cancer 45:694–704

    Article  CAS  PubMed  Google Scholar 

  44. Bose S, Chandran S, Mirocha JM et al (2006) The Akt pathway in human breast cancer: a tissue-array-based analysis. Mod Pathol 19:238–245

    Article  CAS  PubMed  Google Scholar 

  45. Ahmad S, Singh N, Glazer RI (1999) Role of AKT1 in 17beta-estradiol- and insulin-like growth factor I (IGF-I)-dependent proliferation and prevention of apoptosis in MCF-7 breast carcinoma cells. Biochem Pharmacol 58:425–430

    Article  CAS  PubMed  Google Scholar 

  46. Tsai EM, Wang SC, Lee JN et al (2001) Akt activation by estrogen in estrogen receptor-negative breast cancer cells. Cancer Res 61:8390–8392

    CAS  PubMed  Google Scholar 

  47. Kirkegaard T, Witton CJ, McGlynn LM et al (2005) AKT activation predicts outcome in breast cancer patients treated with tamoxifen. J Pathol 207:139–146

    Article  CAS  PubMed  Google Scholar 

  48. Lenferink AE, Busse D, Flanagan WM et al (2001) ErbB2/neu kinase modulates cellular p27(Kip1) and cyclin D1 through multiple signaling pathways. Cancer Res 61:6583–6591

    CAS  PubMed  Google Scholar 

  49. Hermanto U, Zong CS, Wang LH (2001) ErbB2-overexpressing human mammary carcinoma cells display an increased requirement for the phosphatidylinositol 3-kinase signaling pathway in anchorage-independent growth. Oncogene 20:7551–7562

    Article  CAS  PubMed  Google Scholar 

  50. Pianetti S, Arsura M, Romieu-Mourez R et al (2001) Her-2/neu overexpression induces NF-kappaB via a PI3-kinase/Akt pathway involving calpain-mediated degradation of IkappaB-alpha that can be inhibited by the tumor suppressor PTEN. Oncogene 20:1287–1299

    Article  CAS  PubMed  Google Scholar 

  51. Zhang G, He B, Weber GF (2003) Growth factor signaling induces metastasis genes in transformed cells: molecular connection between Akt kinase and osteopontin in breast cancer. Mol Cell Biol 23:6507–6519

    Article  CAS  PubMed  Google Scholar 

  52. Panigrahi AR, Pinder SE, Chan SY et al (2004) The role of PTEN and its signalling pathways, including AKT, in breast cancer; an assessment of relationships with other prognostic factors and with outcome. J Pathol 204:93–100

    Article  CAS  PubMed  Google Scholar 

  53. Schmitz KJ, Otterbach F, Callies R et al (2004) Prognostic relevance of activated Akt kinase in node-negative breast cancer: a clinicopathological study of 99 cases. Mod Pathol 17:15–21

    Article  CAS  PubMed  Google Scholar 

  54. Stal O, Perez-Tenorio G, Akerberg L et al (2003) Akt kinases in breast cancer and the results of adjuvant therapy. Breast Cancer Res 5:R37–R44

    Article  CAS  PubMed  Google Scholar 

  55. Zhou X, Tan M, Stone Hawthorne V et al (2004) Activation of the Akt/mammalian target of rapamycin/4E-BP1 pathway by ErbB2 overexpression predicts tumor progression in breast cancers. Clin Cancer Res 10:6779–6788

    Article  CAS  PubMed  Google Scholar 

  56. Hill MM, Hemmings BA (2002) Inhibition of protein kinase B/Akt. implications for cancer therapy. Pharmacol Ther 93:243–251

    Article  CAS  PubMed  Google Scholar 

  57. Zha J, Harada H, Yang E et al (1996) Serine phosphorylation of death agonist BAD in response to survival factor results in binding to 14-3-3 not BCL-X(L). Cell 87:619–628

    Article  CAS  PubMed  Google Scholar 

  58. Fernando RI, Wimalasena J (2004) Estradiol abrogates apoptosis in breast cancer cells through inactivation of BAD: Ras-dependent nongenomic pathways requiring signaling through ERK and Akt. Mol Biol Cell 15:3266–3284

    Article  CAS  PubMed  Google Scholar 

  59. Krasilnikov MA (2000) Phosphatidylinositol-3 kinase dependent pathways: the role in control of cell growth, survival, and malignant transformation. Biochemistry (Mosc) 65:59–67

    CAS  Google Scholar 

  60. Liao Y, Hung MC (2003) Regulation of the activity of p38 mitogen-activated protein kinase by Akt in cancer and adenoviral protein E1A-mediated sensitization to apoptosis. Mol Cell Biol 23:6836–6848

    Article  CAS  PubMed  Google Scholar 

  61. Yonemori K, Tsuta K, Shimizu C, et al (2009) Immunohistochemical expression of PTEN and phosphorylated Akt are not correlated with clinical outcome in breast cancer patients treated with trastuzumab-containing neo-adjuvant chemotherapy. Med Oncol 26:344-349

    Article  CAS  PubMed  Google Scholar 

  62. Klauber-DeMore N (2005) Tumor biology of breast cancer in young women. Breast Dis 23:9–15

    PubMed  Google Scholar 

  63. Hartley MC, McKinley BP, Rogers EA et al (2006) Differential expression of prognostic factors and effect on survival in young (< or =40) breast cancer patients: a case-control study. Am Surg 72:1189–1194 discussion 1194-5

    PubMed  Google Scholar 

  64. Hussein MR, Abd-Elwahed SR, Abdulwahed AR (2008) Alterations of estrogen receptors, progesterone receptors and c-erbB2 oncogene protein expression in ductal carcinomas of the breast. Cell Biol Int 32:698–707

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

This project is supported by a grant from The Ministry of Science, Innovation and Technology, Malaysia (06-02-04-0373-PR002/07-07).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heng Fong Seow.

Additional information

Wai Kien Yip and Hui Woon Loh contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Seow, H.F., Yip, W.K., Loh, H.W. et al. Immunohistochemical Detection of Phospho-Akt, Phospho-BAD, HER2 and Oestrogen Receptors α and β in Malaysian Breast Cancer Patients. Pathol. Oncol. Res. 16, 239–248 (2010). https://doi.org/10.1007/s12253-009-9216-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12253-009-9216-3

Keywords

Navigation