Skip to main content
Log in

Ocadaic Acid Retains Caveolae in Multicaveolar Clusters

  • Original Paper
  • Published:
Pathology & Oncology Research

Abstract

Caveola-mediated endocytosis exists parallel to other forms of endocytosis. Being ligand-triggered, caveolar endocytosis provides a more selective and highly regulated way for uptake of specified substances. Internalized caveolae accumulate in intermediate organelles called caveosomes. It is still debated whether caveosomes are independent organelles or the downstream caveosomes interact with the classical endocytotic compartments. In our work caveola internalization was stimulated with a serine/threonine phosphatase (PP1 and PP2A) inhibitor (ocadaic acid—OA). To find out whether caveolar clusters are really independent organelles or they are still connected to the cell surface we used an electron dense surface marker, ruthenium red (Ru red). Since we were especially interested in the fate of caveolar clusters, the cells were treated with OA for longer time. Stimulating caveola-mediated endocytosis, OA treatment resulted in a significant increase in the number of caveolar cluster. Most of these clusters were found Ru red positive indicating that they were still conneted to the cell surface. Our double labeling experiments on ultrathin frozen sections clearly showed that in OA-treated cells caveolae are not transported to late endosomes instead they are accumulted in large multicaveolar clusters. We think that PP2A can be one of the key components to regulate the fusion of various endocytotic compartments and /or the trafficking along the microtubules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Sargiacomo M, Sudol M, Tang A, Lisanti MP (1993) Signal transducing molecules and GP1- linked proteins form a caveolin-rich insoluble complex in MDCK cells. J Cell Biol 122:789–807

    Article  CAS  PubMed  Google Scholar 

  2. Murata M, Peranen J, Schreiner R, Wieland F, Kurchalia TV, Simons K (1995) VIP 21/caveolin is a cholesterol-binding protein. Proc Natl Acad Sci USA 92:10339–10343

    Article  CAS  PubMed  Google Scholar 

  3. Harder T, Simons K (1997) Caveolae, DIGs and the dynamics of sphigolipid-cholesterol microdomains. Curr Opin Cell Biol 9:534–542

    Article  CAS  PubMed  Google Scholar 

  4. Smart EJ, Graf GA, Mc Nives MA, Engelman JA, Scherer PE, Okamoto T, Lisanti MP (1999) Caveolins, liquid-ordered domains, and signal transduction. Mol Cell Biol 19:7289–7304

    CAS  PubMed  Google Scholar 

  5. Scherer PE, Lewis RY, Volonte D, Engelman JA, Galbiati F, Couet J, Kohtz DS, van Donselaar E, Peters P, Lisanti MP (1997) Cell-type and tissue-specific expression of caveolin-2. Caveolins 1 and 2 co-localize and form a stable hetero-oligomeric complex in vivo. J Biol Chem 272:29337–29346

    Article  CAS  PubMed  Google Scholar 

  6. Mora R, Bouilha VL, Marmorstein A, Scherer PE, Brown D, Lisanti MP, Rodriguez-Boulan VL (1999) Caveolin-2 localizes to the Golgi complex but redistributes to plasma membrane, caveolae and rafts when co-expressed with caveolin-1. J Biol Chem 274:25708–25717

    Article  CAS  PubMed  Google Scholar 

  7. Song KS, Scherer PE, Tang Z, Okamoto T, Li S, Chafel M, Chu C, Kohtz DS, Lisanti MP (1996) Expression of caveolin-3 in skeletal, cardiac, and smooth muscle cells. Caveolin-3 is a component of the sarcolemma and co-fractionates with dystrophin and dystrophin-associated glycoproteins. J Biol Chem 271:15160–15165

    Article  CAS  PubMed  Google Scholar 

  8. Nishyama K, Trapp BB, Ikezu T, Ranshoff RM, Tomita T, Iwatsubo T, Kanazawa I, Hsiao KK, Lisanti MP, Okamoto T (1999) Caveolin-3 upregulaton activates B-secterase-mediated cleavage of amiloid precursore protein in Alzheimer’s disease. J Neurosci 19:6538–6548

    Google Scholar 

  9. Schwab W, Galbiati F, Volonte D, Hempel U, Wenzel KW, Funk RHW, Lisanti MP, Kasper M (1999) Characterization of caveolins from cartilage: expression of caveolin-1, -2 and -3 in chondrocytes and in alginate cell culture of the rat tibia. Histochem Cell Biol 112:41–49

    Article  CAS  PubMed  Google Scholar 

  10. Rothberg KG, Heuser JE, Donzell WC, Ying YS, Glenney JR, Anderson RG (1992) Caveolin, a protein component of caveolae membrane coats. Cell 68:673–682

    Article  CAS  PubMed  Google Scholar 

  11. Anderson RG, Kamen BA, Rothberg KG, Lacey SW (1992) Potocytosis: sequestration and transport of small molecules by caveolae. Science 255:410–411

    Article  CAS  PubMed  Google Scholar 

  12. Schnitzer JE, Oh P, Pinney E, Allard J (1994) Filipin-sensitive caveolae-mediated transport in endothelium: reduced transcytosis, scavenger endocytosis and cappilary permeability of select macromolecules. J Cell Biol 127:1217–1232

    Article  CAS  PubMed  Google Scholar 

  13. Parton RG, Joggerst B, Simons K (1994) Regulated internalization of caveolae. J Cell Biol 127:1199–1215

    Article  CAS  PubMed  Google Scholar 

  14. Benlimame N, Le PU, Nabi IR (1998) Localization of autocrine motility factor receptor to caveolae and clathrin—independent internalization of its ligand to smooth endoplasmic reticulum. Mol Biol Cell 9:1773–1786

    CAS  PubMed  Google Scholar 

  15. Weiling D, Hope JC, Chaplin P, Collins RA, Taylor G, Howard CJ (1999) Involvement of caveolae in the uptake of respiratory syntitial virus antigen by dendritic cells. J Leukoc Biol 66:50–58

    Google Scholar 

  16. Shin JS, Gao Z, Abraham SN (2000) Involvement of cellular caveolae in bacterial entry into mast cells. Science 289:785–788

    Article  CAS  PubMed  Google Scholar 

  17. Puri V, Watanabe R, Singh RD, Dominguez M, Brown JC, Wheatley CL, Marks DL, Pagano RE (2001) Clathrin-dependent and independent internalization of plasma membrane sphingolipids initiates two Golgi targeting pathways. J Cell Biol 154:535–547

    Article  CAS  PubMed  Google Scholar 

  18. Pelkmans L, Kartenbeck J, Helenius A (2001) Caveolae endocytosis of simian virus 40 reveals a new two-step reticular transport pathway to the ER. Nat Cell Biol 3:473–483

    Article  CAS  PubMed  Google Scholar 

  19. Richterova Z, Liebe D, Horak M, Palkova Z, Stokrova J, Hozak P, Korb J, Forstova J (2001) Caveolae are involved in the traffiching of mouse polyoma virus virion and artificial VP1 pseudocapsids toward cell nuclei. J Virol 75:0880–10891

    Article  Google Scholar 

  20. Campbell SM, Crowe SM, Mark J (2001) Lipid rafts and HIV-1 from viral entry to assembly of progeny virion. J Clin Virol 22:217–227

    Article  CAS  PubMed  Google Scholar 

  21. Pelkmans L, Helenius A (2002) Endocytosis via caveolae. Traffic 3:311–320

    Article  CAS  PubMed  Google Scholar 

  22. Pietiäinen V, Marjomäki V, Upla P, Pelkmans L, Helenius A, Hyypiä T (2004) Echovirus 1 endocytosis into caveosomes requires lipid rafts, dynamin and signaling events. Mol Biol Cell 15:4911–4925

    Article  PubMed  Google Scholar 

  23. Glenney JR Jr (1989) Tyrosine phosphorylation of a 22 kDa protein is correlated with transformation by Rous sarcoma virus. J Biol Chem 264:20163–20166

    CAS  PubMed  Google Scholar 

  24. Li S, Seitz R, Lisanti MP (1996) Phophorylation of caveolin by Src tyrosine kinases. The α-isoform of caveolin is selectively phosphorylated by vSrc in vivo. J Biol Chem 271:3863–3868

    Article  CAS  PubMed  Google Scholar 

  25. Tiruppathi C, Song W, Bergenfeldt M, Sass P, Malik AB (1997) Gp60 activation mediates albumin transcytosis in endothelial cells by a tyrosine kinase-dependent pathway. J Biol Chem 272:25968–25975

    Article  CAS  PubMed  Google Scholar 

  26. Lee H, Park DS, Wang XB, Scherer PE, Schwartz PE, Lisanti MP (2002) Src-induced phosphorylation of caveolin-2 on tyrosin 19. J Biol Chem 277:4556–34567

    Google Scholar 

  27. Kiss AL, Botos E, Turi A, Müllner N (2004) Ocadaic acid treatment causes phosphorylation of caveolin-2 and induces internalization of caveolae in rat peritoneal macrophages. Micron 35:707–715

    Article  CAS  PubMed  Google Scholar 

  28. Thomsen P, Roepstooff K, Stahlhut M, van Deurs B (2002) Caveolae are highly immobile plasma membrane microdomains which are not involved in constitutive endocytic trafficking. Mol Biol Cell 13:238–250

    Article  CAS  PubMed  Google Scholar 

  29. Sharma DK, Choudhury A, Singh RD, Wheatley CL, Marks DL, Pagano RE (2003) Glycosphingolipids internalized via caveola-related endocytosis rapidly merge with the clathrin pathway in early endosomes and form microdomains for recycling. J Biol Chem 278:7564–7572

    Article  CAS  PubMed  Google Scholar 

  30. Botos E, Turi Á, Müllner N, Kovalszky I, Tátrai P, Kiss AL (2007) Regulatory role of kinases and phospatases on the internalization of caveolae in HepG2 cells. Micron 38:313–320

    Article  CAS  PubMed  Google Scholar 

  31. Fernandez JJ, Candenas ML, Suoto ML, Trujillo MM, Norte M (2002) Ocadaic acid, useful tool for studying cellular processes. Current Medicinal Chem 9:229–262

    CAS  Google Scholar 

  32. Cohen PT (2002) Protein phosphatase I.-targated in many directions. J Cell Sci 115:241–256

    CAS  PubMed  Google Scholar 

  33. Nicols BJ (2002) A distinct class of endosome mediates clathrin independent endocytosis to the Golgi complex. Nat Cell Biol 4:374–378

    Google Scholar 

  34. Weibel ER, Kiseler GS, Scherle WF (1996) Practical stereoloical method for morphometric cytology. J Cell Biol 30:23–38

    Article  Google Scholar 

  35. Richards AA, Stang E, Peppehok R, Parton RG (2002) Inhibitors of COP-mediated transport and Cholera toxin action inhibit simian virus 40 infection. Mol Biol Cell 13:1750–1764

    Article  CAS  PubMed  Google Scholar 

  36. Kartenbeck J, Stukenbrok H, Helenius A (1989) Endocytosis of simian virus 40 into endoplasmic reticulum. J Cell Biol 109:2721–2729

    Article  CAS  PubMed  Google Scholar 

  37. Parton RG, Richard AA (2003) Lipid rafts and caveolae as portals for endocytosis: new insights and common mechanisms. Traffic 4:724–738

    Article  CAS  PubMed  Google Scholar 

  38. Botos E, Klumperman J, Oorschot V, Igyártó B, Magyar A, Oláh M, Kiss AL (2008) Caveolin-1 is transported to multivesicular bodies after albumin-induced endocytosis of caveolae in HepG2 cells. J Cell Mol Med 12:1–9

    Article  Google Scholar 

  39. Molloy SS, Thomas L, Kamibayashi C, Mumby MC, Thomas G (1998) Regulation of endosome sorting by a specific PP2A isoform. J Cell Biol 142:1399–1411

    Article  CAS  PubMed  Google Scholar 

  40. Price NE, Munby MC (1999) Brain protein serine/theorine phosphateses. Curr Opin Neurobiol 9:336–342

    Article  CAS  PubMed  Google Scholar 

  41. Sontag E, Nunbhahdi-Craig V, Lee G, Brandt R, Kamibayaski C, Kuret J, White CLIII, Mumby MC, Bloom GS (1999) Molecular interactions among protein phosphatase 2A, tau and microtubules. J Biol Chem 274:25490–25498

    Article  CAS  PubMed  Google Scholar 

  42. Varlamov O, Kalinina E, Che F-Y, Fricker LD (2000) Protein phosphatase 2A binds to the cytoplasmic tail of carboxypeptidase D and regulates post-trans-Golgi network trafficking. J Cell Sci 114:311–322

    Google Scholar 

  43. Schapiro F, Soe TT, Mallet G, Maxfield F (2004) Role of cytoplasmic domain serines in intracellular trafficking of furin. Mol Biol Cell 15:1882–2894

    Article  Google Scholar 

  44. Rundell K, Parakati R (2001) The role of the SV40ST antigen in cell growth promotion and transformation. Semin Cancer Biol 11:5–13

    Article  CAS  PubMed  Google Scholar 

  45. Mumby DI, Machleidt T, Ying YS, Anderson RG, Bloom GS (2002) Dual control of caveolae membrane traffic by microtubules and actin cytoskleton. J Cell Sci 115:4327–4339

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Margit Kutasi and Katalin Lőcsey for their valuable technical assistance. We awfully thank prof. Bela Vigh to inspirate us in writing this manuscript. We also thank for his critical advice. We gratefully acknowledge Prof. Pál Röhlich for critical reading of the manuscript and Dr. Elisabeth Fromm for the language correction of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna L. Kiss.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kiss, A.L., Botos, E. Ocadaic Acid Retains Caveolae in Multicaveolar Clusters. Pathol. Oncol. Res. 15, 479–486 (2009). https://doi.org/10.1007/s12253-008-9139-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12253-008-9139-4

Keywords

Navigation