Skip to main content

Advertisement

Log in

The Efficient Generation of Immunocompetent Dendritic Cells from Leukemic Blasts in Acute Myeloid Leukemia: A Local Experience

  • Original Paper
  • Published:
Pathology & Oncology Research

Abstract

Dendritic cells (DCs) are the most important antigen presenting cells with potentially useful applications in cancer immunotherapy. Leukemic cells of patients with acute myeloid leukemia (AML) could be differentiated to DC-like cells possessing the ability of stimulating anti-leukemic immune response. Despite obvious progress in DC-based immunotherapy, some discrepancies were reported in differentiation potential of AML blasts from all patients toward DC like cells. The present study, as a local experience, was set up to generate DCs from AML blasts of various subtypes. Leukemic Blasts from 16 Iranian AML patients were differentiated into functional DCs by culturing in the presence of rhGM-CSF, rhIL-4 and TNF-alpha for 8 days. The morphology, expression of key surface molecules and allostimulatory activity of resultant DCs were compared with primary blasts and cultured but cytokine untreated control groups. The pattern of angiotensin-converting enzyme (ACE) expression was used to approve the leukemic origin of generated DCs. Neo-expression or upregulation of DC-associated markers were occurred during culturing period in cytokine treated cells compared with primary blasts and cultured but cytokine untreated control groups: CD1a (63.22% vs. 3.22% and 11.79%), CD83 (41.27% vs. 0.11% and 0.70%), CD40 (15.17% vs. 0.00% and 0.04%), CD80 (49.96 vs. 0.02% and 0.32%), CD86 (56.49% vs. 0.50% and 5.71%) and HLA-DR (52.52% vs. 14.32% and 2.49%) respectively. The potency of generated DCs to induce allogeneic T cell proliferation increased significantly compared to pre and post culture control groups (27,533.4 ± 2,548.3, 8,820.4 ± 1,639.4 and 3,200.35 ± 976 respectively). The expression pattern of ACE in AML-DCs, blast cells and DCs derived from normal monocytes (7.93%, 1.28% and 74.97% respectively) confirmed the leukemic origin of DCs. Our data confirmed the generation of sufficient AML-derived cells with the properties of DCs in all cases. This potency of AML blasts, offers a useful route for active immunotherapy of AML patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Wang ZY, Chen Z (2008) Acute promyelocytic leukemia: from highly fatal to highly curable. Blood 111:2505–2515

    Article  CAS  PubMed  Google Scholar 

  2. Mato AR, Morgans A, Luger SM (2008) Novel strategies for relapsed and refractory acute myeloid leukemia. Curr Opin Hematol 15:108–114

    Article  PubMed  Google Scholar 

  3. Capra M, Vilella L, Pereira WV, Coser VM, Fernandes MS, Schilling MA, Almeida D, Gross M, Leite M, Hellwig T, Natchigal G, Zelmanowicz A, Paskulin G, Neumann J, Silla L (2007) Estimated number of cases, regional distribution and survival of patients diagnosed with acute myeloid leukemia between 1996 and 2000 in Rio Grande do Sul, Brazil. Leuk Lymphoma 48:2381–2386

    Article  PubMed  Google Scholar 

  4. Pulte D, Gondos A, Brenner H (2008) Improvements in survival of adults diagnosed with acute myeloblastic leukemia in the early 21st century. Haematologica 93:594–600

    Article  PubMed  Google Scholar 

  5. Yanada M, Garcia-Manero G, Borthakur G, Ravandi F, Kantarjian H, Estey E (2008) Relapse and death during first remission in acute myeloid leukemia. Haematologica 93:633–634

    Article  PubMed  Google Scholar 

  6. Kim HR, Shin JH, Lee JN, Lee EY (2007) Clinical significance of quantitation of WT1 gene expression for minimal residual disease monitoring of acute myelogenous leukemia. Korean J Lab Med 27:305–312

    Article  CAS  PubMed  Google Scholar 

  7. Ho MM, Hogge DE, Ling V (2008) MDR1 and BCRP1 expression in leukemic progenitors correlates with chemotherapy response in acute myeloid leukemia. Exp Hematol 36:433–442

    Article  CAS  PubMed  Google Scholar 

  8. Hussein K, Jahagirdar B, Gupta P, Burns L, Larsen K, Weisdorf D (2008) Day 14 bone marrow biopsy in predicting complete remission and survival in acute myeloid leukemia. Am J Hematol 83(6):446–450

    Article  PubMed  Google Scholar 

  9. Ommen HB, Nyvold CG, Braendstrup K, Andersen BL, Ommen IB, Hasle H, Hokland P, Ostergaard M (2008) Relapse prediction in acute myeloid leukaemia patients in complete remission using WT1 as a molecular marker: development of a mathematical model to predict time from molecular to clinical relapse and define optimal sampling intervals. Br J Haematol 141(6):782–791

    Article  CAS  PubMed  Google Scholar 

  10. Aversa F (2008) Haploidentical haematopoietic stem cell transplantation for acute leukaemia in adults: experience in Europe and the United States. Bone Marrow Transplant 41:473–481

    Article  CAS  PubMed  Google Scholar 

  11. Hamadani M, Awan FT, Copelan EA (2008) Hematopoietic stem cell transplantation in adults with acute myeloid leukemia. Biol Blood Marrow Transplant 14:556–567

    Article  CAS  PubMed  Google Scholar 

  12. Fefer A, Sullivan KM, Weiden P, Buckner CD, Schoch G, Storb R, Thomas ED (1987) Graft versus leukemia effect in man: the relapse rate of acute leukemia is lower after allogeneic than after syngeneic marrow transplantation. Prog Clin Biol Res 244:401–408

    CAS  PubMed  Google Scholar 

  13. Huang XJ, Wang Y, Liu DH, Xu LP, Chen H, Chen YH, Han W, Shi HX, Liu KY (2008) Modified donor lymphocyte infusion (DLI) for the prophylaxis of leukemia relapse after hematopoietic stem cell transplantation in patients with advanced leukemia—feasibility and safety study. J Clin Immunol 28:390–397

    Article  CAS  PubMed  Google Scholar 

  14. Slavin S, Ackerstein A, Naparstek E, Or R, Weiss L (1990) The graft-versus-leukemia (GVL) phenomenon: is GVL separable from GVHD? Bone Marrow Transplant 6:155–161

    CAS  PubMed  Google Scholar 

  15. Ge X, Brown J, Sykes M, Boussiotis VA (2008) CD134-allodepletion allows selective elimination of alloreactive human T cells without loss of virus-specific and leukemia-specific effectors. Biol Blood Marrow Transplant 14:518–530

    Article  CAS  PubMed  Google Scholar 

  16. Hartwig UF, Nonn M, Khan S, Link I, Huber C, Herr W (2008) Depletion of alloreactive donor T lymphocytes by CD95-mediated activation-induced cell death retains antileukemic, antiviral, and immunoregulatory T cell immunity. Biol Blood Marrow Transplant 14:99–109

    Article  CAS  PubMed  Google Scholar 

  17. Buggins AG, Milojkovic D, Arno MJ, Lea NC, Mufti GJ, Thomas NS, Hirst WJ (2001) Microenvironment produced by acute myeloid leukemia cells prevents T cell activation and proliferation by inhibition of NF-kappaB, c-Myc, and pRb pathways. J Immunol 167:6021–6030

    CAS  PubMed  Google Scholar 

  18. Narita M, Takahashi M, Liu A, Nikkuni K, Furukawa T, Toba K, Koyama S, Takai K, Sanada M, Aizawa Y (2001) Leukemia blast-induced T-cell anergy demonstrated by leukemia-derived dendritic cells in acute myelogenous leukemia. Exp Hematol 29:709–719

    Article  CAS  PubMed  Google Scholar 

  19. Orleans-Lindsay JK, Barber LD, Prentice HG, Lowdell MW (2001) Acute myeloid leukaemia cells secrete a soluble factor that inhibits T and NK cell proliferation but not cytolytic function—implications for the adoptive immunotherapy of leukaemia. Clin Exp Immunol 126:403–411

    Article  CAS  PubMed  Google Scholar 

  20. Duluc D, Delneste Y, Tan F, Moles MP, Grimaud L, Lenoir J, Preisser L, Anegon I, Catala L, Ifrah N, Descamps P, Gamelin E, Gascan H, Hebbar M, Jeannin P (2007) Tumor-associated leukemia inhibitory factor and IL-6 skew monocyte differentiation into tumor-associated macrophage-like cells. Blood 110:4319–4330

    Article  CAS  PubMed  Google Scholar 

  21. Hirano N, Takahashi T, Ohtake S, Hirashima K, Emi N, Saito K, Hirano M, Shinohara K, Takeuchi M, Taketazu F, Tsunoda S, Ogura M, Omine M, Saito T, Yazaki Y, Ueda R, Hirai H (1996) Expression of costimulatory molecules in human leukemias. Leukemia 10:1168–1176

    CAS  PubMed  Google Scholar 

  22. Costello RT, Mallet F, Sainty D, Maraninchi D, Gastaut JA, Olive D (1998) Regulation of CD80/B7-1 and CD86/B7-2 molecule expression in human primary acute myeloid leukemia and their role in allogenic immune recognition. Eur J Immunol 28:90–103

    Article  CAS  PubMed  Google Scholar 

  23. Bruserud O (1999) Acute myelogenous leukemia blasts as accessory cells during T lymphocyte activation: possible implications for future therapeutic strategies. Leukemia 13:1175–1187

    Article  CAS  PubMed  Google Scholar 

  24. Adams S, O'Neill DW, Bhardwaj N (2005) Recent advances in dendritic cell biology. J Clin Immunol 25:87–98

    Article  PubMed  Google Scholar 

  25. Greiner J, Dohner H, Schmitt M (2006) Cancer vaccines for patients with acute myeloid leukemia—definition of leukemia-associated antigens and current clinical protocols targeting these antigens. Haematologica 91:1653–1661

    CAS  PubMed  Google Scholar 

  26. Heinzinger M, Waller CF, von den Berg A, Rosenstiel A, Lange W (1999) Generation of dendritic cells from patients with chronic myelogenous leukemia. Ann Hematol 78:181–186

    Article  CAS  PubMed  Google Scholar 

  27. Eisendle K, Lang A, Eibl B, Nachbaur D, Glassl H, Fiegl M, Thaler J, Gastl G (2003) Phenotypic and functional deficiencies of leukaemic dendritic cells from patients with chronic myeloid leukaemia. Br J Haematol 120:63–73

    Article  PubMed  Google Scholar 

  28. Takahashi T, Tanaka Y, Nieda M, Azuma T, Chiba S, Juji T, Shibata Y, Hirai H (2003) Dendritic cell vaccination for patients with chronic myelogenous leukemia. Leuk Res 27:795–802

    Article  PubMed  Google Scholar 

  29. Tong XM, Jin J, Qian WB, Meng HT, Xue YQ (2005) Biological features of dendritic cells derived from chronic myeloid leukemia cells in vitro. Zhejiang Da Xue Xue Bao Yi Xue Ban 34:348–352, 357

    Google Scholar 

  30. Zhang YF, Wu CY, Zhang LS, Chai Y (2006) In vitro cytokines-induced differentiation in mononuclear cell derived dendritic cells from chronic myeloid leukemia. Zhongguo Shi Yan Xue Ye Xue Za Zhi 14:137–141

    CAS  PubMed  Google Scholar 

  31. Kohler T, Plettig R, Wetzstein W, Schmitz M, Ritter M, Mohr B, Schaekel U, Ehninger G, Bornhauser M (2000) Cytokine-driven differentiation of blasts from patients with acute myelogenous and lymphoblastic leukemia into dendritic cells. Stem Cells 18:139–147

    Article  CAS  PubMed  Google Scholar 

  32. Oehler L, Berer A, Kollars M, Keil F, Konig M, Waclavicek M, Haas O, Knapp W, Lechner K, Geissler K (2000) Culture requirements for induction of dendritic cell differentiation in acute myeloid leukemia. Ann Hematol 79:355–362

    Article  CAS  PubMed  Google Scholar 

  33. Claxton D, Choudhury A (2001) Potential for therapy with AML-derived dendritic cells. Leukemia 15:668–669

    Article  CAS  PubMed  Google Scholar 

  34. Yan KH, You SG, Bian SG, Ma GJ, Ge W, Ma S, Liu SH, Zhao CH (2003) Dendritic cells (DC) induced from acute myeloid leukemia (AML) cells with cytokine cocktails. Zhonghua Xue Ye Xue Za Zhi 24:365–368

    PubMed  Google Scholar 

  35. Houtenbos I, Westers TM, Ossenkoppele GJ, van de Loosdrecht AA (2006) Leukemia-derived dendritic cells: towards clinical vaccination protocols in acute myeloid leukemia. Haematologica 91:348–355

    PubMed  Google Scholar 

  36. Robinson SP, English N, Jaju R, Kearney L, Knight SC, Reid CD (1998) The in-vitro generation of dendritic cells from blast cells in acute leukaemia. Br J Haematol 103:763–771

    CAS  PubMed  Google Scholar 

  37. Choudhury BA, Liang JC, Thomas EK, Flores-Romo L, Xie QS, Agusala K, Sutaria S, Sinha I, Champlin RE, Claxton DF (1999) Dendritic cells derived in vitro from acute myelogenous leukemia cells stimulate autologous, antileukemic T-cell responses. Blood 93:780–786

    CAS  PubMed  Google Scholar 

  38. Brouwer RE, van der Hoorn M, Kluin-Nelemans HC, van Zelderen-Bhola S, Willemze R, Falkenburg JH (2000) The generation of dendritic-like cells with increased allostimulatory function from acute myeloid leukemia cells of various FAB subclasses. Hum Immunol 61:565–574

    Article  CAS  PubMed  Google Scholar 

  39. Harrison BD, Adams JA, Briggs M, Brereton ML, Yin JA (2001) Stimulation of autologous proliferative and cytotoxic T-cell responses by “leukemic dendritic cells” derived from blast cells in acute myeloid leukemia. Blood 97:2764–2771

    Article  CAS  PubMed  Google Scholar 

  40. Roddie PH, Horton Y, Turner ML (2002) Primary acute myeloid leukaemia blasts resistant to cytokine-induced differentiation to dendritic-like leukaemia cells can be forced to differentiate by the addition of bryostatin-1. Leukemia 16:84–93

    Article  CAS  PubMed  Google Scholar 

  41. Almand B, Resser JR, Lindman B, Nadaf S, Clark JI, Kwon ED, Carbone DP, Gabrilovich DI (2000) Clinical significance of defective dendritic cell differentiation in cancer. Clin Cancer Res 6:1755–1766

    CAS  PubMed  Google Scholar 

  42. Bello-Fernandez C, Stasakova J, Renner A, Carballido-Perrig N, Koening M, Waclavicek M, Madjic O, Oehler L, Haas O, Carballido JM, Buschle M, Knapp W (2003) Retrovirus-mediated IL-7 expression in leukemic dendritic cells generated from primary acute myelogenous leukemias enhances their functional properties. Blood 101:2184–2190

    Article  CAS  PubMed  Google Scholar 

  43. Orsini E, Guarini A, Chiaretti S, Mauro FR, Foa R (2003) The circulating dendritic cell compartment in patients with chronic lymphocytic leukemia is severely defective and unable to stimulate an effective T-cell response. Cancer Res 63:4497–4506

    CAS  PubMed  Google Scholar 

  44. Van der Reijden HJ, van Rhenen DJ, Lansdorp PM, van’t Veer MB, Langenhuijsen MM, Engelfriet CP, von dem Borne AE (1983) A comparison of surface marker analysis and FAB classification in acute myeloid leukemia. Blood 61:443–448

    PubMed  Google Scholar 

  45. Neame PB, Soamboonsrup P, Browman GP, Meyer RM, Benger A, Wilson WE, Walker IR, Saeed N, McBride JA (1986) Classifying acute leukemia by immunophenotyping: a combined FAB-immunologic classification of AML. Blood 68:1355–1362

    CAS  PubMed  Google Scholar 

  46. Danilov SM, Sadovnikova E, Scharenborg N, Balyasnikova IV, Svinareva DA, Semikina EL, Parovichnikova EN, Savchenko VG, Adema GJ (2003) Angiotensin-converting enzyme (CD143) is abundantly expressed by dendritic cells and discriminates human monocyte-derived dendritic cells from acute myeloid leukemia-derived dendritic cells. Exp Hematol 31:1301–1309

    Article  CAS  PubMed  Google Scholar 

  47. Conti L, Cardone M, Varano B, Puddu P, Belardelli F, Gessani S (2008) Role of the cytokine environment and cytokine receptor expression on the generation of functionally distinct dendritic cells from human monocytes. Eur J Immunol 38:750–762

    Article  CAS  PubMed  Google Scholar 

  48. Hassan HT, Zander A (1996) Stem cell factor as a survival and growth factor in human normal and malignant hematopoiesis. Acta Haematol 95:257–262

    Article  CAS  PubMed  Google Scholar 

  49. Caux C, Saeland S, Favre C, Duvert V, Mannoni P, Banchereau J (1990) Tumor necrosis factor-alpha strongly potentiates interleukin-3 and granulocyte-macrophage colony-stimulating factor-induced proliferation of human CD34+ hematopoietic progenitor cells. Blood 75:2292–2298

    CAS  PubMed  Google Scholar 

  50. Mackensen A, Herbst B, Chen JL, Kohler G, Noppen C, Herr W, Spagnoli GC, Cerundolo V, Lindemann A (2000) Phase I study in melanoma patients of a vaccine with peptide-pulsed dendritic cells generated in vitro from CD34(+) hematopoietic progenitor cells. Int J Cancer 86:385–392

    Article  CAS  PubMed  Google Scholar 

  51. Brunner C, Seiderer J, Schlamp A, Bidlingmaier M, Eigler A, Haimerl W, Lehr HA, Krieg AM, Hartmann G, Endres S (2000) Enhanced dendritic cell maturation by TNF-alpha or cytidine-phosphate-guanosine DNA drives T cell activation in vitro and therapeutic anti-tumor immune responses in vivo. J Immunol 165:6278–6286

    CAS  PubMed  Google Scholar 

  52. Morel Y, Truneh A, Sweet RW, Olive D, Costello RT (2001) The TNF superfamily members LIGHT and CD154 (CD40 ligand) costimulate induction of dendritic cell maturation and elicit specific CTL activity. J Immunol 167:2479–2486

    CAS  PubMed  Google Scholar 

  53. Cignetti A, Bryant E, Allione B, Vitale A, Foa R, Cheever MA (1999) CD34(+) acute myeloid and lymphoid leukemic blasts can be induced to differentiate into dendritic cells. Blood 94:2048–2055

    CAS  PubMed  Google Scholar 

  54. Bagheri K, Delirezh N, Moazzeni SM (2008) PPD extract induces the maturation of human monocyte-derived dendritic cells. Immunopharmacol Immunotoxicol 30:91–104

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are greatly indebted to the Iran National Science Foundation (INSF) for their financial supports. We also would like to thank the personnel of Hematology, Oncology and Bone Marrow Transplantation Research Center (Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran), and the members of Flow cytometry Department of Iranian Blood Transfusion Organization, especially from Mr. Hajati Smerdis for their kind supports and valuable technical assistances.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seyyed Mohammad Moazzeni.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bagheri, K., Alimoghadam, K., Pourfathollah, A.A. et al. The Efficient Generation of Immunocompetent Dendritic Cells from Leukemic Blasts in Acute Myeloid Leukemia: A Local Experience. Pathol. Oncol. Res. 15, 257–267 (2009). https://doi.org/10.1007/s12253-008-9105-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12253-008-9105-1

Keywords

Navigation