Skip to main content

Advertisement

Log in

Dynamic MR Based Analysis of Tumor Movement in Upper and Mid Lobe Localized Lung Cancer

  • Original Paper
  • Published:
Pathology & Oncology Research

Abstract

Background and purpose: Tumor motion is a very important factor in the radiotherapy of lung cancer. Uncertainty resulting from tumor movement must be considered in 3D therapy planning especially in case of IMRT or stereotactic therapy. The aim of our dynamic MR based study was to detect tumor movements in upper and mid lobe lung tumors. Patient and methods: Twenty-four patients with newly diagnosed stage II-IV lung cancer were enrolled into the study. According to tumor localization in the right S1–S3 segments 9, in the right S4–S6 segments 2, in the left S1–S3 segments 9 and in the left S4–S6 segments 4 lesions were detected. In normal treatment position individual dynamic MR examinations were performed in axial, sagittal and coronal planes (100 slices/30 sec). For tumor motion analysis E-RAD PAC's software was used. Results: Movements of the tumor under normal breathing conditions were registered in the three main directions. The mean antero-posterior deviation was 0,109 cm (range: 0,063 cm–0,204 cm), the mean medio-lateral deviation was 0,114 cm (range: 0,06 cm– 0,244 cm). The greatest deviation was measured in cranio–caudal direction (mean: 0,27 cm, range: 0,079 cm– 0,815 cm). The mean direction independent deviation was 0,18 cm (range: 0,09 cm– 0,48 cm). Conclusion: Dynamic MR is a sensitive and well tolerated method for tumor motion monitoring in high precision 3D therapy planning of lung cancer patients. Our results demonstrate that tumors located in the upper and mid lobes have moderate breath synchronous movements. The greatest deviation occur in cranio–caudal direction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Bollmann A, Blankenburg T, Haerting J, Kuss O, Schütte W, Dunst J, Neef H (2004) on behalf of the HALLUCA Study group. Survival of patients in clinical stages I-IIIb of non-small-cell lung cancer treated with radiation therapy alone. Strahlenther Onkol 8:488–496

    Google Scholar 

  2. Lagerwaard FJ, Senan S, van Meerbeck JP et al (2002) Has 3D conformal radiotherapy improved the local control in stage I non-small cell lung cancer? Radiother Oncol 63:151–157

    Article  PubMed  Google Scholar 

  3. Kohz P, Stabler A, Beinert T et al (1995) Reproducibility of quantitative controlled CT. Radiol 197:539–542

    CAS  Google Scholar 

  4. Weiss E, Hess CF (2003) The impact of gross tumor volume (GTV) and clinical target volume (CTV) definition on the total accuracy in radiotherapy. Strahlenther Onkol 1:21–30

    Article  Google Scholar 

  5. Armstrong J (1998) Target definition for three dimensional radiation therapy of lung cancer. BR J Radiol 846:539–542

    Google Scholar 

  6. Ekberg L, Holmberg O, Wittgren L, Bjelkengren G, Landberg T (1998) What margins should be added to the clinical target volume in radiotherapy treatment planning for lung cancer? Radiother Oncol 48(1):71–77 Jul

    Article  CAS  PubMed  Google Scholar 

  7. Shimizu S, Shirato H, Kagei K et al (2000) Impact of respiratory movement on the computed tomographic images of small lung tumors in three-dimensional (3D) radiotherapy. Int J Radiat Oncol Biol Phys 46:1127–1133

    CAS  PubMed  Google Scholar 

  8. Stevens C, Munden R, Forester K et al (2001) Respiratory-driven lung tumor motion in depend of tumor size, tumor location, and pulmonary function. Int J Radiat Oncol Biol Phys 51:62–68

    CAS  PubMed  Google Scholar 

  9. Gauthier AP, Verbanck S, Estenne M et al (1994) Three-dimensional reconstruction of the in vivo human diaphragm shape at different lung volumes. J Appl Physiol 76:495–506

    CAS  PubMed  Google Scholar 

  10. Gierada DS, Curtin JJ, Erickson SJ et al (1995) Diaphragmatic motion: fast gradient-recalled-echo MR imaging in healthy subjects. Radiology 194:879–884

    CAS  PubMed  Google Scholar 

  11. Napadow VJ, Mai V, Bankier A et al (2001) Determination of regional pulmonary parenchymal strain during normal respiration using spin inversion tagged magnetization MRI. J Magn Reson Imaging 13:467–474

    Article  CAS  PubMed  Google Scholar 

  12. International Commission on Radiation Units and Measurements.: ICRU Report 62. Prescribing, recording, and reporting photon beam therapy (Supplement to ICRU Report 50) Bethesda, MD (1999) by Wambersie A, Landberg T

  13. Kubo HD, Hill BC (1996) Respiration gated radiotherapy treatment: a technical study. Phys Med Biol 41:83–91

    Article  CAS  PubMed  Google Scholar 

  14. Lagerwaard FJ, van Sornsen de Koste JR, Lagerwaard FJ et al (2001) Multiple “slow” CT scans for incorporating lung tumor mobility in radiotherapy planning. Int J Radiat Oncol Biol Phys 51:932–937

    CAS  PubMed  Google Scholar 

  15. Seppenwoolde Y, Shirato H, Kitamura K et al (2002) Precise and real-time measurement of 3D tumor motion in lung due to breathing and heartbeat, measured during radiotherapy. Int J Radiat Oncol Biol Phys 53:822–834

    PubMed  Google Scholar 

  16. de Boer HC, van Sornsen de Koste JR, Senan S et al (2001) Analysis and reduction of 3D systematic and random setup errors during the simulation and treatment of lung cancer patients with CT-based external beam radiotherapy dose planning. Int J Radiat Oncol Biol Phy 49:857–868

    Google Scholar 

  17. Hof H, Herfarth KK, Munter M et al (2003) Stereotactic single-dose radiotherapy of stage I non-small-cell lung cancer (NSCLC). Int J Radiat Oncol Biol Phys 56:335–341

    Article  PubMed  Google Scholar 

  18. Noel G, Sarrazin T, Mirabel X, Prevost B (1997) Use of real-time system of portal imaging in the daily monitroing of patients treated by radiotherapy for thoracic cancer. Cancer Radiother 1:249–257

    CAS  PubMed  Google Scholar 

  19. Kovacs A, Hadjiev J, Lakosi F, Vallyon M, Cselik Z, Bogner P, Horvath A, Repa I (2007) Thermoplastic patient fixation: influence on chest wall and target motion during radiotherapy of lung cancer. Strahlenther Onkol 183(5):271–278 May

    Article  PubMed  Google Scholar 

  20. Giraud P, De Rycke Y, Dubray B et al (2001) Conformal radiotherapy (CRT) planning for lung cancer: Analysis of intrathoracic organ motion during extreme phases of breathing. Int J Radiat Oncol Biol Phys 51:1081–1092

    CAS  PubMed  Google Scholar 

  21. van Sornsen de Koste JR, Lagerwaard FJ, Nijssen-Visser MR et al (2003) Tumor location cannot predict the mobility of lung tumors: A 3D analysis of data generated from multiple CT scans. Int J Radiat Oncol Biol Phys 56:348–354

    Article  PubMed  Google Scholar 

  22. Shinichiro M, Masahiro E, Shuhei K, Tomoyasu Y, Susumu K, Masayuki B (2007) Four-dimensional measurement of lung tumor displacement using 256-multi-slice CT-scanner. Lung Cancer 56(1):59–67 April

    Article  Google Scholar 

  23. Plathow C, Ley S, Fink C, Puderbach M, Hosch W, Schmahl A, Debus J, Kauczor H (2004) Analysis of intratrochacic tumor mobility during whole breathing cycle by dynamic MRI. Int J Radiation Oncology Biol Phys 59(4):952–959

    Article  Google Scholar 

  24. De Neve W, Derycke S, De Gersem W, Vkaet L, De Wagner C (1998) Portal imaging in conformal radiotherapy of lung cancer. In: Mornex F, Van Houtte P (eds) Treatment optimization for lung cancer from classical to innovative procedures. IASLC International Workshop. 24–27 June 1998; Annecy (France). Elsevier, Amsterdam, pp 109–113

    Google Scholar 

  25. Verhey LJ (1995) Immobilizing and positioning patients for radiotherapy. Semin Radiat Oncol 5:100–114

    Article  PubMed  Google Scholar 

  26. Kubo HD, Len PM, Minohara S, Mostafavi H (2000) Breathing synchronized radiotherapy program at the University of California Davis Center Cancer. Med Phys 27:346–353

    Article  CAS  PubMed  Google Scholar 

  27. Hanley J, Debois MM, Mah D et al (1999) Deep inspiration breathhold technique for lung tumors: The potential value of target immobilization and reduced lung density in dose escalation. Int J Radiat Oncol Biol Phys 45:603–611

    CAS  PubMed  Google Scholar 

  28. Rosenzweig K, Hanley J, Mah D et al (2000) The deep inspiration breath-hold technique in the treatment of inoperable nonsmall-cell lung cancer. Int J Radiat Oncol Biol Phys 48:81–87

    Article  CAS  PubMed  Google Scholar 

  29. Wong JW, Sharpe MB, Jaffray DA et al (1999) The use of active breathing control (ABC) to reduce margin for breathing motion. Int J Radiat Oncol Biol Phys 44(4):911–919

    CAS  PubMed  Google Scholar 

  30. Mah D, Hanley J, Rosenzweig K, Yorke E, Braban L, Ling C, Leibel A, Mageras G (2000) Technical aspects of the deep inspiration breath-hold technique in the treatment of thoracic cancer. Int J Radiat Oncol Biol Phys 48:1175–1185

    Article  CAS  PubMed  Google Scholar 

  31. Plathow C, Hof H, Kuhn S, Puderbach M, Ley S, Biederer J, Claussen CD, Huber PE, Schaefer J, Tuengerthal S, Kauczor HU (2006) Therapy monitoring using dynamic MRI: analysis of lung motion and intrathoracic tumor mobility before and after radiotherapy. Eur Radiol 16(9):1942–1950 Sep, Epub 2006 Apr 21

    Article  PubMed  Google Scholar 

  32. Plathow C, Ley S, Fink C et al (2004) Evaluation of chest motion and volumetry during the breathing cycle by dynamic MRI in healthy subjects: comparison with pulmonary function tests. Invest Radiol 39:202–209

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Horvath.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kovacs, A., Hadjiev, J., Lakosi, F. et al. Dynamic MR Based Analysis of Tumor Movement in Upper and Mid Lobe Localized Lung Cancer. Pathol. Oncol. Res. 15, 269–277 (2009). https://doi.org/10.1007/s12253-008-9101-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12253-008-9101-5

Keywords

Navigation