Bacteriophages and Lysins in Biofilm Control

Abstract

To formulate the optimal strategy of combatting bacterial biofilms, in this review we update current knowledge on the growing problem of biofilm formation and its resistance to antibiotics which has spurred the search for new strategies to deal with this complication. Based on recent findings, the role of bacteriophages in the prevention and elimination of biofilm-related infections has been emphasized. In vitro, ex vivo and in vivo biofilm treatment models with single bacteriophages or phage cocktails have been compared. A combined use of bacteriophages with antibiotics in vitro or in vivo confirms earlier reports of the synergistic effect of these agents in improving biofilm removal. Furthermore, studies on the application of phage-derived lysins in vitro, ex vivo or in vivo against biofilm-related infections are encouraging. The strategy of combined use of phage and antibiotics seems to be different from using lysins and antibiotics. These findings suggest that phages and lysins alone or in combination with antibiotics may be an efficient weapon against biofilm formation in vivo and ex vivo, which could be useful in formulating novel strategies to combat bacterial infections. Those findings proved to be relevant in the prevention and destruction of biofilms occurring during urinary tract infections, orthopedic implant-related infections, periodontal and peri-implant infections. In conclusion, it appears that most efficient strategy of eliminating biofilms involves phages or lysins in combination with antibiotics, but the optimal scheme of their administration requires further studies.

This is a preview of subscription content, access via your institution.

References

  1. Abedon ST (2018) Bacteriophage-mediated biocontrol of wound infections, and ecological exploitation of biofilms by phages. In: Shiffman MA, Low M (eds) Recent clinical techniques, results, and research in wounds. Springer, Berlin, pp 1–38

    Google Scholar 

  2. Abedon ST, Garcia P, Mullany P, Aminov R (2017) Editorial: phage therapy: past, present and future. Front Microbiol 8:981

    PubMed  PubMed Central  Article  Google Scholar 

  3. Akanda ZZ, Taha M, Abdelbary H (2018) Current review-The rise of bacteriophage as a unique therapeutic platform in treating peri-prosthetic joint infections. J Orthop Res 36:1051–1060

    PubMed  Google Scholar 

  4. Bai J, Jeon B, Ryu S (2019) Effective inhibition of Salmonella typhimurium in fresh produce by a phage cocktail targeting multiple host receptors. Food Microbiol 77:52–60

    CAS  PubMed  Article  Google Scholar 

  5. Borysowski J, Weber-Dąbrowska B, Górski A (2006) Bacteriophage endolysins as a novel class of antibacterial agents. Exp Biol Med (Maywood) 231:366–377

    CAS  Article  Google Scholar 

  6. Borysowski J, Lobocka M, Międzybrodzki R, Weber-Dąbrowska B, Górski A (2011) Potential of bacteriophages and their lysins in the treatment of MRSA: current status and future perspectives. BioDrugs 25(6):347–355

    CAS  PubMed  Article  Google Scholar 

  7. Chan BK, Abedon ST (2015) Bacteriophages and their enzymes in biofilm control. Curr Pharm Des 21:85–99

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  8. Chaudhry WN, Concepción-Acevedo J, Park T, Andleeb S, Bull JJ, Levin BR (2017) Synergy and order effects of antibiotics and phages in killing Pseudomonas aeruginosa biofilms. PLoS ONE 12:e0168615

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  9. Chopra S, Harjai K, Chhibber S (2015) Potential of sequential treatment with minocycline and S. aureus specific phage lysin in eradication of MRSA biofilms: an in vitro study. Appl Microbiol Biotechnol 99:3201–3210

    CAS  PubMed  Article  Google Scholar 

  10. Fischetti VA (2017) Lysin therapy for Staphylococcus aureus and other bacterial pathogens. Curr Top Microbiol Immunol 409:529–540

    CAS  PubMed  Google Scholar 

  11. Fischetti VA (2018) Development of phage lysins as novel therapeutics: a historical perspective. Viruses 10:E310

    PubMed  Article  CAS  Google Scholar 

  12. Fu W, Forster T, Mayer O, Curtin JJ, Lehman SM, Donlan RM (2010) Bacteriophage cocktail for the prevention of biofilm formation by Pseudomonas aeruginosa on catheters in an in vitro model system. Antimicrob Agents Chemother 54:397–404

    CAS  PubMed  Article  Google Scholar 

  13. Górski A, Międzybrodzki R, Węgrzyn G, Jończyk-Matysiak E, Borysowski J, Weber-Dąbrowska B (2019) Phage therapy: current status and perspectives. Med Res Rev. https://doi.org/10.1002/med.21593

    Article  PubMed  Google Scholar 

  14. Gray JA, Chandry PS, Kaur M, Kocharunchitt C, Bowman JP, Fox EM (2018) Novel biocontrol methods for Listeria monocytogenes biofilms in food production facilities. Front Microbiol 9:605

    PubMed  PubMed Central  Article  Google Scholar 

  15. Guo M, Feng C, Ren J, Zhuang X, Zhang Y, Zhu Y, Dong K, He P, Guo X, Qin J et al (2017) A novel antimicrobial endolysin, LysPA26, against Pseudomonas aeruginosa. Front Microbiol 8:293

    PubMed  PubMed Central  Google Scholar 

  16. Henriksen K, RØrbo N, Rybtke ML, Martinet MG, Tolker-Nielsen T, Høiby N, Middelboe M, Ciofu O (2019) P. aeruginosa flow-cell biofilms are enhanced by repeating phage treatments but can be eradicated by phage-ciprofloxacin combination. Pathog Dis 77:ftz011

  17. Hesse S, Adhya S (2019) Phage therapy in the twenty-first century: facing the decline of the antibiotic era; is it finally time for the age of the phage. Annu Rev Microbiol 73:155–174

    CAS  PubMed  Article  Google Scholar 

  18. Issa R, Chanishvili N, Caplin J, Kakabadze E, Bakuradze N, Makalatia K, Cooper I (2019) Anti-biofilm potential of purified environmental bacteriophage preparations against early stage Pseudomonas aeruginosa biofilms. J Appl Microbiol 126:1657–1667

    CAS  PubMed  Article  Google Scholar 

  19. Kaur S, Harjai K, Chhibber S (2016) In vivo assessment of phage and linezolid based implant coating for treatment of Methicillin Resistant S. aureus (MRSA) mediated orthopaedic device related infections. PLoS ONE 11:e0157626

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  20. Khalifa L, Brosh Y, Gelman D, Coppenhagen-Glazer S, Beyth S, Poradosu-Cohen R, Que YA, Beyth N, Hazan R (2015) Targeting Enterococcus faecalis biofilms with phage therapy. Appl Environ Microbiol 81:2696–2705

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  21. Khalifa L, Shlezinger M, Beyth S, Houri-Haddad Y, Coppenhagen-Glazer S, Beyth N, Hazan R (2016) Phage therapy against Enterococcus faecalis in dental root canals. J Oral Microbiol 8:32157

    PubMed  Article  Google Scholar 

  22. Kropinski AM (2006) Phage therapy—everything old is new again. Can J Infect Dis Med Microbiol 17(5):297–306

    PubMed  PubMed Central  Article  Google Scholar 

  23. Kumaran D, Taha M, Yi Q, Ramirez-Arcos S, Diallo JS, Carli A, Abdelbary H (2018) Does treatment order matter? Investigating the ability of bacteriophage to augment antibiotic activity against Staphylococcus aureus biofilms. Front Microbiol 9:127

    PubMed  PubMed Central  Article  Google Scholar 

  24. Lood R, Winer BY, Pelzek AJ, Diez-Martinez R, Thandar M, Euler CW, Schuch R, Fischetti VA (2015) Novel phage lysin capable of killing the multidrug-resistant gram-negative bacterium Acinetobacter baumannii in a mouse bacteremia model. Antimicrob Agents Chemother 59(4):1983–1991

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  25. Mah TF, O’Toole GA (2001) Mechanisms of biofilm resistance to antimicrobial agents. Trends Microbiol 9:34–39

    CAS  Article  Google Scholar 

  26. Malik S, Sidhu PK, Rana JS, Nehra K (2019) Managing urinary tract infections through phage therapy: a novel approach. Folia Microbiol (Praha) Sep 7. https://doi.org/10.1007/s12223-019-00750-y

    Article  Google Scholar 

  27. Maszewska A, Zygmunt M, Grzejdziak I, Różalski A (2018) Use of polyvalent bacteriophages to combat biofilm of Proteus mirabilis causing catheter-associated urinary tract infections. J Appl Microbiol 125:1253–1265

    CAS  PubMed  Article  Google Scholar 

  28. McCallin S, Sacher JC, Zheng J, Chan BK (2019) Current state of compassionate phage therapy. Viruses 11:E343

    PubMed  Article  Google Scholar 

  29. Melo LD, Veiga P, Cerca N, Kropinski AM, Almeida C, Azeredo J, Sillankorva S (2016) Development of a phage cocktail to control Proteus mirabilis catheter-associated urinary tract infections. Front Microbiol 7:1024

    PubMed  PubMed Central  Article  Google Scholar 

  30. Melo LDR, Brandao A, Akturk E, Santos SB, Azeredo J (2018) Characterization of a new Staphylococcus aureus Kayvirus harboring a lysin active against biofilms. Viruses 10:E182

    PubMed  Article  CAS  Google Scholar 

  31. Melo LDR, Pires DP, Monteiro R, Azeredo J (2019) Phage therapy of infectious biofilms: challenges and strategies. In: Górski A, Międzybrodzki R, Borysowski J (eds) Phage therapy: a Practical approach. Springer, Switzerland, pp 295–313

    Google Scholar 

  32. Morris J, Kelly N, Elliot L, Grant A, Wilkinson M, Hazratwala K, McEwen P (2019) Evaluation of bacteriophage anti-biofilm activity for potential control of orthopedic implant-related infections caused by Staphylococcus aureus. Surg Infect (Larchmt) 20:16–24

    Article  Google Scholar 

  33. Nale JY, Chutia M, Carr P, Hickenbotham PT, Clokie M (2016) ‘Get in early’; Biofilm and wax moth (Galleria mellonella) models reveal new insights into the therapeutic potential of Clostridium difficile bacteriophages. Front Microbiol 7:1383

    PubMed  PubMed Central  Article  Google Scholar 

  34. Oechslin F (2018) Resistance development to bacteriophages occurring during bacteriophage therapy. Viruses 10:351

    Article  CAS  PubMed Central  Google Scholar 

  35. Pinto G, Silva MD, Peddey M, Sillankorva S, Azeredo J (2016) The role of bacteriophages in periodontal health and disease. Future Microbiol 11:1359–1369

    CAS  PubMed  Article  Google Scholar 

  36. Pires DP, Dötsch A, Anderson EM, Hao Y, Khursigara CM, Lam JS, Sillankorva S, Azeredo J (2017a) A genotyping analysis of five P. aeruginosa strains after biofilm infection by phages targeting different cell surface receptors. Front Microbiol 8:1229

    PubMed  PubMed Central  Article  Google Scholar 

  37. Pires DP, Melo LDR, Vilas Boas D, Sillankorva S, Azeredo J (2017b) Phage therapy as an alternative or complementary strategy to prevent and control biofilm-related infections. Curr Opin Microbiol 39:48–56

    CAS  PubMed  Article  Google Scholar 

  38. Poonacha N, Nair S, Desai S, Tuppad D, Hiremath D, Mohan T, Vipra A, Sharma U (2017) Efficient killing of planktonic and biofilm-embedded coagulase-negative staphylococci by bactericidal protein P128. Antimicrob Agents Chemother 61:e00457-17

    PubMed  PubMed Central  Article  Google Scholar 

  39. Ryan EM, Alkawareek MY, Donnelly RF, Gilmore BF (2012) Synergistic phage-antibiotic combinations for the control of Escherichia coli biofilms in vitro. FEMS Immunol Med Microbiol 65:395–398

    CAS  PubMed  Article  Google Scholar 

  40. Sass P, Bierbaum G (2007) Lytic activity of recombinant bacteriophage phi11 and phi12 endolysins on whole cells and biofilms of Staphylococcus aureus. Appl Environ Microbiol 73:347–352

    CAS  PubMed  Article  Google Scholar 

  41. Schuch R, Khan BK, Raz A, Rotolo JA, Wittekind M (2017) Bacteriophage lysin CF-301, a potent antistaphyloccocal biofilm agent. Antimicrob Agents Chemother 61:e02666-16

    PubMed  PubMed Central  Article  Google Scholar 

  42. Sharma U, Vipra A, Channabasappa S (2018) Phage-derived lysins as potential agents for eradication biofilms and persisters. Drug Discov Today 23:848–856

    CAS  PubMed  Article  Google Scholar 

  43. Sillankorva S, Azeredo J (2014) The use of bacteriophages and bacteriophage-derived enzymes for clinically relevant biofilm control. In: Borysowski J, Międzybrodzki R, Górski A (eds) Phage therapy: current research and application. Caister Academic Press, Wymondham (chapter 13)

    Google Scholar 

  44. Simmons M, Morales CA, Oakley BB, Seal BS (2012) Recombinant expression of a putative amidase cloned from the genome of Listeria monocytogenes that lyses the bacterium and its monolayer in conjunction with a protease. Probiotics Antimicrob Proteins 4:1–10

    CAS  PubMed  Article  Google Scholar 

  45. Singh PK, Donovan DM, Kumar A (2014) Intravitreal injection of the chimeric phage endolysin Ply187 protects mice from Staphylococcus aureus endophthalmitis. Antimicrob Agents Chemother 58:4621–4629

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  46. Szafrański SP, Winkel A, Stiesch M (2017) The use of bacteriophages to biocontrol oral biofilms. J Biotechnol 250:29–44

    PubMed  Article  CAS  Google Scholar 

  47. Taha M, Abdelbary H, Ross FP, Carli AV (2018) New innovations in the treatment of PJI and biofilms-clinical and preclinical topics. Curr Rev Musculoskelet Med 11:380–388

    PubMed  PubMed Central  Article  Google Scholar 

  48. Thandar M, Lood R, Winer BY, Deutsch DR, Euler CW, Fischetti VA (2016) Novel engineered peptides of a phage lysin as effective antimicrobials against multidrug-resistant Acinetobacter baumanii. Antimicrob Agents Chemother 60:2671–2679

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  49. Tkhilaishvili T, Lombardi L, Klatt AB, Trampuz A, Di Luca M (2018) Bacteriophage Sb-1 enhances antibiotic activity against biofilm, degrades exopolysaccharide matrix and targets persisters of Staphylococcus aureus. Int J Antimicrob Agents 52:842–853

    CAS  PubMed  Article  Google Scholar 

  50. Yang H, Yu J, Wei H (2014) Engineered bacteriophage lysins as novel anti-infectives. Front Microbiol 5:542

    PubMed  PubMed Central  Google Scholar 

  51. Yilmaz C, Colak M, Yilmaz BC, Ersoz G, Kutatelidze M, Gozlugol M (2013) Bacteriophage therapy in implant-related infections: an experimental study. J Bone Joint Surg Am 95:117–125

    PubMed  Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the statutory funds from the Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Marzanna Łusiak-Szelachowska or Beata Weber-Dąbrowska or Andrzej Górski.

Ethics declarations

Conflict of interest

A Górski and B Weber-Dąbrowska are co-inventors of patents owned by the Hirszfeld Institute of Immunology and Experimental Therapy and covering phage preparations. M Łusiak-Szelachowska declares that she has no conflict of interest.

Animal and Human Rights Statement

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Łusiak-Szelachowska, M., Weber-Dąbrowska, B. & Górski, A. Bacteriophages and Lysins in Biofilm Control. Virol. Sin. 35, 125–133 (2020). https://doi.org/10.1007/s12250-019-00192-3

Download citation

Keywords

  • Antibiotics
  • Bacteriophages
  • Biofilm
  • Chronic diseases
  • Lysins