Structural Basis of Glycan Recognition in Globally Predominant Human P[8] Rotavirus

Abstract

Rotavirus (RV) causes acute gastroenteritis in infants and children worldwide. Recent studies showed that glycans such as histo-blood group antigens (HBGAs) function as cell attachment factors affecting RV host susceptibility and prevalence. P[8] is the predominant RV genotype in humans, but the structural basis of how P[8] RVs interact with glycan ligands remains elusive. In this study, we characterized the interactions between P[8] VP8*s and glycans which showed that VP8*, the RV glycan binding domain, recognized both mucin core 2 and H type 1 antigens according to the ELISA-based oligosaccharide binding assays. Importantly, we determined the structural basis of P[8] RV-glycans interaction from the crystal structures of a Rotateq P[8] VP8* in complex with core 2 and H type 1 glycans at 1.8 Å and 2.3 Å, respectively, revealing a common binding pocket and similar binding mode. Structural and sequence analysis demonstrated that the glycan binding site is conserved among RVs in the P[II] genogroup, while genotype-specific amino acid variations determined different glycan binding preference. Our data elucidated the detailed structural basis of the interactions between human P[8] RVs and different host glycan factors, shedding light on RV infection, epidemiology, and development of anti-viral agents.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Adams PD, Afonine PV, Bunkoczi G, Chen VB, Davis IW, Echols N, Headd JJ, Hung LW, Kapral GJ, Grosse-Kunstleve RW, McCoy AJ, Moriarty NW, Oeffner R, Read RJ, Richardson DC, Richardson JS, Terwilliger TC, Zwart PH (2010) PHENIX: a comprehensive python-based system for macromolecular structure solution. Acta Crystallogr D Biol Crystallogr 66:213–221

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  2. Ayouni S, Sdiri-Loulizi K, de Rougemont A, Estienney M, Ambert-Balay K, Aho S, Hamami S, Aouni M, Neji-Guediche M, Pothier P, Belliot G (2015) Rotavirus P[8] infections in persons with secretor and nonsecretor phenotypes, Tunisia. Emerg Infect Dis 21:2055–2058

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  3. Barbe L, Le Moullac-Vaidye B, Echasserieau K, Bernardeau K, Carton T, Bovin N, Nordgren J, Svensson L, Ruvoen-Clouet N, Le Pendu J (2018) Histo-blood group antigen-binding specificities of human rotaviruses are associated with gastroenteritis but not with in vitro infection. Sci Rep 8:12961

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  4. Blanchard H, Yu X, Coulson BS, von Itzstein M (2007) Insight into host cell carbohydrate-recognition by human and porcine rotavirus from crystal structures of the virion spike associated carbohydrate-binding domain (VP8*). J Mol Biol 367:1215–1226

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  5. Bohm R, Fleming FE, Maggioni A, Dang VT, Holloway G, Coulson BS, von Itzstein M, Haselhorst T (2015) Revisiting the role of histo-blood group antigens in rotavirus host-cell invasion. Nat Commun 6:5907

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  6. Burnett E, Parashar U, Tate J (2018) Rotavirus vaccines: effectiveness, safety, and future directions. Paediatr Drugs 20:223–233

    PubMed  PubMed Central  Article  Google Scholar 

  7. Ciarlet M, Estes MK (1999) Human and most animal rotavirus strains do not require the presence of sialic acid on the cell surface for efficient infectivity. J Gen Virol 80(Pt 4):943–948

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  8. Desselberger U (2017) Differences of rotavirus vaccine effectiveness by country: likely causes and contributing factors. Pathogens. https://doi.org/10.3390/pathogens6040065

    Article  PubMed  PubMed Central  Google Scholar 

  9. Dormitzer PR, Sun ZY, Wagner G, Harrison SC (2002) The rhesus rotavirus VP4 sialic acid binding domain has a galectin fold with a novel carbohydrate binding site. EMBO J 21:885–897

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  10. Emsley P, Cowtan K (2004) Coot: model-building tools for molecular graphics. Acta Crystallogr D Biol Crystallogr 60:2126–2132

    Article  CAS  PubMed  Google Scholar 

  11. Estes MK, Greenberg HB (2013) Rotaviruses. In: Knipe DM, Howley PM et al (eds) Fields Virology, 6th edn. Wolters Kluwer Health/Lippincott Williams & Wilkins, Philadelphia, pp 1347–1401

    Google Scholar 

  12. Etzold S, Bode L (2014) Glycan-dependent viral infection in infants and the role of human milk oligosaccharides. Curr Opin Virol 7:101–107

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  13. Fiore L, Greenberg HB, Mackow ER (1991) The VP8 fragment of VP4 is the rhesus rotavirus hemagglutinin. Virology 181:553–563

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  14. Fleming FE, Bohm R, Dang VT, Holloway G, Haselhorst T, Madge PD, Deveryshetty J, Yu X, Blanchard H, von Itzstein M, Coulson BS (2014) Relative roles of GM1 ganglioside, N-acylneuraminic acids, and α2β1 integrin in mediating rotavirus infection. J Virol 88:4558–4571

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  15. Gunaydin G, Nordgren J, Sharma S, Hammarstrom L (2016) Association of elevated rotavirus-specific antibody titers with HBGA secretor status in Swedish individuals: the FUT2 gene as a putative susceptibility determinant for infection. Virus Res 211:64–68

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  16. Haselhorst T, Fleming FE, Dyason JC, Hartnell RD, Yu X, Holloway G, Santegoets K, Kiefel MJ, Blanchard H, Coulson BS, von Itzstein M (2009) Sialic acid dependence in rotavirus host cell invasion. Nat Chem Biol 5:91–93

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  17. Hu L, Crawford SE, Czako R, Cortes-Penfield NW, Smith DF, Le Pendu J, Estes MK, Prasad BV (2012) Cell attachment protein VP8* of a human rotavirus specifically interacts with A-type histo-blood group antigen. Nature 485:256–259

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  18. Hu L, Ramani S, Czako R, Sankaran B, Yu Y, Smith DF, Cummings RD, Estes MK, Venkataram Prasad BV (2015) Structural basis of glycan specificity in neonate-specific bovine-human reassortant rotavirus. Nat Commun 6:8346

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  19. Hu L, Sankaran B, Laucirica DR, Patil K, Salmen W, Ferreon ACM, Tsoi PS, Lasanajak Y, Smith DF, Ramani S, Atmar RL, Estes MK, Ferreon JC, Prasad BVV (2018) Glycan recognition in globally dominant human rotaviruses. Nat Commun 9:2631

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  20. Huang P, Xia M, Tan M, Zhong W, Wei C, Wang L, Morrow A, Jiang X (2012) Spike protein VP8* of human rotavirus recognizes histo-blood group antigens in a type-specific manner. J Virol 86:4833–4843

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  21. Imbert-Marcille BM, Barbe L, Dupe M, Le Moullac-Vaidye B, Besse B, Peltier C, Ruvoen-Clouet N, Le Pendu J (2014) A FUT2 gene common polymorphism determines resistance to rotavirus A of the P[8] genotype. J Infect Dis 209:1227–1230

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  22. Jensen PH, Kolarich D, Packer NH (2010) Mucin-type O-glycosylation—putting the pieces together. FEBS J 277:81–94

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  23. Jiang X, Liu Y, Tan M (2017) Histo-blood group antigens as receptors for rotavirus, new understanding on rotavirus epidemiology and vaccine strategy. Emerg Microbes Infect 6:e22

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Johannes M, Reindl M, Gerlitzki B, Schmitt E, Hoffmann-Roder A (2015) Synthesis and biological evaluation of a novel MUC1 glycopeptide conjugate vaccine candidate comprising a 4′-deoxy-4′-fluoro-Thomsen-Friedenreich epitope. Beilstein J Org Chem 11:155–161

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  25. Kuhlenschmidt TB, Hanafin WP, Gelberg HB, Kuhlenschmidt MS (1999) Sialic acid dependence and independence of group A rotaviruses. Adv Exp Med Biol 473:309–317

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  26. Kunz C, Rudloff S, Baier W, Klein N, Strobel S (2000) Oligosaccharides in human milk: structural, functional, and metabolic aspects. Annu Rev Nutr 20:699–722

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  27. Liu Y, Huang P, Tan M, Liu Y, Biesiada J, Meller J, Castello AA, Jiang B, Jiang X (2012) Rotavirus VP8*: phylogeny, host range, and interaction with histo-blood group antigens. J Virol 86:9899–9910

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  28. Liu Y, Huang P, Jiang B, Tan M, Morrow AL, Jiang X (2013) Poly-LacNAc as an age-specific ligand for rotavirus P[11] in neonates and infants. PLoS ONE 8:e78113

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  29. Liu Y, Ramelot TA, Huang P, Liu Y, Li Z, Feizi T, Zhong W, Wu FT, Tan M, Kennedy MA, Jiang X (2016) Glycan specificity of P[19] rotavirus and comparison with those of related P genotypes. J Virol 90:9983–9996

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  30. Liu Y, Xu S, Woodruff AL, Xia M, Tan M, Kennedy MA, Jiang X (2017) Structural basis of glycan specificity of P[19] VP8*: implications for rotavirus zoonosis and evolution. PLoS Pathog 13:e1006707

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  31. Ma X, Li DD, Sun XM, Guo YQ, Xiang JY, Wang WH, Zhang LX, Gu QJ, Duan ZJ (2015) Binding patterns of rotavirus genotypes P[4], P[6], and P[8] in China with histo-blood group antigens. PLoS ONE 10:e0134584

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  32. Matthijnssens J, Ciarlet M, McDonald SM, Attoui H, Banyai K, Brister JR, Buesa J, Esona MD, Estes MK, Gentsch JR, Iturriza-Gomara M, Johne R, Kirkwood CD, Martella V, Mertens PP, Nakagomi O, Parreno V, Rahman M, Ruggeri FM, Saif LJ, Santos N, Steyer A, Taniguchi K, Patton JT, Desselberger U, Van Ranst M (2011) Uniformity of rotavirus strain nomenclature proposed by the Rotavirus Classification Working Group (RCWG). Arch Virol 156:1397–1413

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  33. Moran AP, Gupta A, Joshi L (2011) Sweet-talk: role of host glycosylation in bacterial pathogenesis of the gastrointestinal tract. Gut 60:1412–1425

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  34. Morozov V, Hansman G, Hanisch FG, Schroten H, Kunz C (2018) Human milk oligosaccharides as promising antivirals. Mol Nutr Food Res 62:e1700679

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  35. Nordgren J, Sharma S, Bucardo F, Nasir W, Gunaydin G, Ouermi D, Nitiema LW, Becker-Dreps S, Simpore J, Hammarstrom L, Larson G, Svensson L (2014) Both lewis and secretor status mediate susceptibility to rotavirus infections in a rotavirus genotype dependent manner. Clin Infect Dis 59:1567–1573

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  36. Otwinowski Z, Minor W (1997) Processing of X-ray diffraction data collected in oscillation mode. Macromol Crystallogr Pt A 276:307–326

    CAS  Article  Google Scholar 

  37. Pang LL, Wang MX, Sun XM, Yuan Y, Qing Y, Xin Y, Zhang JY, Li DD, Duan ZJ (2018) Glycan binding patterns of human rotavirus P[10] VP8* protein. Virol J 15:161

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  38. Pindyck T, Tate JE, Parashar UD (2018) A decade of experience with rotavirus vaccination in the United States—vaccine uptake, effectiveness, and impact. Expert Rev Vaccines 17:593–606

    CAS  PubMed  Article  Google Scholar 

  39. Pollock L, Bennett A, Jere KC, Dube Q, Mandolo J, Bar-Zeev N, Heyderman RS, Cunliffe NA, Iturriza-Gomara M (2018) Non-secretor histo-blood group antigen phenotype is associated with reduced risk of clinical rotavirus vaccine failure in Malawian infants. Clin Infect Dis. https://doi.org/10.1093/cid/ciy1067

    Article  PubMed  PubMed Central  Google Scholar 

  40. Ramani S, Cortes-Penfield NW, Hu L, Crawford SE, Czako R, Smith DF, Kang G, Ramig RF, Le Pendu J, Prasad BV, Estes MK (2013) The VP8* domain of neonatal rotavirus strain G10P[11] binds to type II precursor glycans. J Virol 87:7255–7264

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  41. Ramani S, Stewart CJ, Laucirica DR, Ajami NJ, Robertson B, Autran CA, Shinge D, Rani S, Anandan S, Hu L, Ferreon JC, Kuruvilla KA, Petrosino JF, Venkataram Prasad BV, Bode L, Kang G, Estes MK (2018) Human milk oligosaccharides, milk microbiome and infant gut microbiome modulate neonatal rotavirus infection. Nat Commun 9:5010

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  42. Read RJ (2001) Pushing the boundaries of molecular replacement with maximum likelihood. Acta Crystallogr D Biol Crystallogr 57:1373–1382

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  43. Rey FA, Gozalbo-Rovira R, Ciges-Tomas JR, Vila-Vicent S, Buesa J, Santiso-Bellón C, Monedero V, Yebra MJ, Marina A, Rodríguez-Díaz J (2019) Unraveling the role of the secretor antigen in human rotavirus attachment to histo-blood group antigens. PLoS Pathog 15:e1007865

    Article  CAS  Google Scholar 

  44. Rha B, Tate JE, Payne DC, Cortese MM, Lopman BA, Curns AT, Parashar UD (2014) Effectiveness and impact of rotavirus vaccines in the United States—2006–2012. Expert Rev Vaccines 13:365–376

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  45. Ruggeri FM, Greenberg HB (1991) Antibodies to the trypsin cleavage peptide VP8 neutralize rotavirus by inhibiting binding of virions to target cells in culture. J Virol 65:2211–2219

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  46. Skovlund VR (1997) ABH and related histo-blood group antigens in normal & malignant human endometrium in relation to genetic and hormonal factors. APMIS Suppl 69:1–33

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Sun X, Guo N, Li D, Jin M, Zhou Y, Xie G, Pang L, Zhang Q, Cao Y, Duan ZJ (2016a) Binding specificity of P[8] VP8* proteins of rotavirus vaccine strains with histo-blood group antigens. Virology 495:129–135

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  48. Sun X, Guo N, Li J, Yan X, He Z, Li D, Jin M, Xie G, Pang L, Zhang Q, Liu N, Duan ZJ (2016b) Rotavirus infection and histo-blood group antigens in the children hospitalized with diarrhoea in China. Clin Microbiol Infect 22(740):e741–e743

    Google Scholar 

  49. Sun X, Guo N, Li J, Yan X, He Z, Li D, Jin M, Xie G, Pang L, Zhang Q, Liu N, Duan ZJ (2016c) Rotavirus infection and histo-blood group antigens in the children hospitalized with diarrhoea in China. Clin Microbiol Infect. https://doi.org/10.1016/j.cmi.2016.06.007

    Article  PubMed  Google Scholar 

  50. Sun X, Li D, Peng R, Guo N, Jin M, Zhou Y, Xie G, Pang L, Zhang Q, Qi J, Duan ZJ (2016d) Functional and structural characterization of P[19] rotavirus VP8* Interaction with histo-blood group antigens. J Virol 90:9758–9765

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  51. Sun X, Li D, Qi J, Chai W, Wang L, Wang L, Peng R, Wang H, Zhang Q, Pang L, Kong X, Wang H, Jin M, Gao GF, Duan Z (2018) Glycan binding specificity and mechanism of human and porcine P[6]/P[19] rotavirus VP8*s. J Virol 92:e00538-18

    PubMed  PubMed Central  Article  Google Scholar 

  52. Tan M, Jiang X (2014) Histo-blood group antigens: a common niche for norovirus and rotavirus. Expert Rev Mol Med 16:e5

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  53. Tate JE, Burton AH, Boschi-Pinto C, Parashar UD, World Health Organization-Coordinated Global Rotavirus Surveillance N (2016) Global, regional, and national estimates of rotavirus mortality in children < 5 years of age, 2000–2013. Clin Infect Dis 62(Suppl 2):S96–S105

    PubMed  Article  PubMed Central  Google Scholar 

  54. Van Trang N, Vu HT, Le NT, Huang P, Jiang X, Anh DD (2014) Association between norovirus and rotavirus infection and histo-blood group antigen types in Vietnamese children. J Clin Microbiol 52:1366–1374

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  55. Xu S, Liu Y, Tan M, Zhong W, Zhao D, Jiang X, Kennedy MA (2019) Molecular basis of P[6] and P[8] major human rotavirus VP8* domain interactions with histo-blood group antigens. BioRxiv. https://doi.org/10.1101/512301:512301

    Article  Google Scholar 

  56. Yu Y, Lasanajak Y, Song X, Hu L, Ramani S, Mickum ML, Ashline DJ, Prasad BV, Estes MK, Reinhold VN, Cummings RD, Smith DF (2014) Human milk contains novel glycans that are potential decoy receptors for neonatal rotaviruses. Mol Cell Proteom 13:2944–2960

    CAS  Article  Google Scholar 

  57. Yu J, Lai S, Geng Q, Ye C, Zhang Z, Zheng Y, Wang L, Duan Z, Zhang J, Wu S, Parashar U, Yang W, Liao Q, Li Z (2018) Prevalence of rotavirus and rapid changes in circulating rotavirus strains among children with acute diarrhea in China, 2009–2015. J Infect. https://doi.org/10.1016/j.jinf.2018.07.004

    Article  PubMed  PubMed Central  Google Scholar 

  58. Zhang XF, Long Y, Tan M, Zhang T, Huang Q, Jiang X, Tan WF, Li JD, Hu GF, Tang S, Dai YC (2016) P[8] and P[4] rotavirus infection associated with secretor phenotypes among children in South China. Sci Rep 6:34591

    CAS  PubMed  PubMed Central  Article  Google Scholar 

Download references

Acknowledgments

We are grateful to Jingyu Yan in Dalian Institute of Chemical Physics for kindly providing the free LNFP1 oligosaccharide purified from human milk. We would like to thank George F. Gao, Jinhua Yan, and Yi Shi in the Institute of Microbiology for the help in data analysis. We thank Huiying Li, Xiaohui Gao, Qiuyu Huang, Yu Qing, Lili Pang, Miao Jin, Xiangyu Kong in our lab for their help in the experiments. We appreciate the help of Yuan Yuan, Min Zhao, Yan Li, Xu Yang, Ruchao Peng, and Han Wang in the Institute of Microbiology in X-ray data collection. The assistance by the staff at the Shanghai Synchrotron Radiation Facility (SSRF-beamline 17U) is acknowledged. This research was supported by grants from the National Science and Technology Major Project (2018ZX10711-001) and the National Natural Science Foundation of China (NSFC) (No. 81601813).

Author information

Affiliations

Authors

Contributions

ZD, XS, and DL designed the experiments. XS, LD, DL, and MW performed the protein expression and glycan binding experiments. XS, LD, QZ, and HW performed the virus inhibition assay. JQ solved the structures. XS and JQ analyzed the structural data. XS, RB, WC interpreted the glycan binding data. XS wrote the draft manuscript. ZD, XS, and MT revised the manuscript.

Corresponding author

Correspondence to Zhaojun Duan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Animal and Human Rights Statement

The study was approved by the Medical Ethics Committee at National Institute for Viral Disease Control and Prevention, China CDC, Beijing, China and by the Institutional Animal Care and Use Committee (IACUC) of National Institute for Viral Disease Control and Prevention, China CDC. All the experimental procedures were performed in accordance with the Regulations for the Administration of Affairs Concerning Experimental Animals approved by the State Council of People’s Republic of China.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sun, X., Dang, L., Li, D. et al. Structural Basis of Glycan Recognition in Globally Predominant Human P[8] Rotavirus. Virol. Sin. 35, 156–170 (2020). https://doi.org/10.1007/s12250-019-00164-7

Download citation

Keywords

  • Rotavirus (RV)
  • P[8]
  • Glycan binding specificity
  • VP8* structure
  • Mucin core 2
  • Lacto-N-fucopentaose 1 (LNFP1)