Skip to main content

Genome Characteristics and Evolution of Pseudorabies Virus Strains in Eastern China from 2017 to 2019

Abstract

Since late 2011, outbreaks of pseudorabies virus (PRV) have occurred in southern China causing major economic losses to the pig industry. We previously reported that variant PRV forms and recombination in China could be the source of continued epidemics. Here, we analyzed samples from intensive pig farms in eastern China between 2017 and 2019, and sequenced the main glycoproteins (gB, gC, gD, and gE) to study the evolution characteristics of PRV. Based on the gC gene, we found that PRV variants belong to clade 2 and detected a founder effect during by the PRV epidemic. In addition, we detected inter- and intra-clade recombination; in particular, inter-clade recombination in the gB genes of strains FJ-ZXF and FJ-W2, which were recombinant with clade 1 strains. We also found specific amino-acid changes and positively selected sites, possibly associated with functional changes. This analysis of the emergence of PRV in China illustrates the need for continuous monitoring and the development of vaccines against specific variants of PRV.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  • An TQ, Peng JM, Tian ZJ, Zhao HY, Li N, Liu YM, Chen JZ, Leng CL, Sun Y, Chang D, Tong GZ (2013) Pseudorabies virus variant in bartha-k61-vaccinated pigs, China, 2012. Emerg Infect Dis 19:1749–1755

    Article  PubMed  PubMed Central  Google Scholar 

  • Delport W, Poon AFY, Frost SDW, Pond SLK (2010) Datamonkey 2010: a suite of phylogenetic analysis tools for evolutionary biology. Bioinformatics 26:2455–2457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Drummond AJ, Rambaut A (2007) BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol Biol 7:214

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Flynn SJ, Ryan P (1995) A heterologous heparin-binding domain can promote functional attachment of a pseudorabies virus gC mutant to cell surfaces. J Virol 69:834–839

    CAS  PubMed  PubMed Central  Google Scholar 

  • Flynn SJ, Ryan P (1996) The receptor-binding domain of pseudorabies virus glycoprotein C is composed of multiple discrete units that are functionally redundant. J Virol 70:1355–1364

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hall TA (1999) BioEdit : a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98

    CAS  Google Scholar 

  • He WT, Auclert LZ, Zhai X, Wong G, Zhang C, Zhu H, Xing G, Wang S, He W, Li K, Wang L, Han G-Z, Veit M, Zhou J, Su S (2019a) Interspecies transmission, genetic diversity, and evolutionary dynamics of pseudorabies virus. J Infect Dis 219:1705–1715

    Article  PubMed  Google Scholar 

  • He WT, Li GR, Zhu HN, Shi WF, Wang RY, Zhang C, Bi YH, Lai A, Gao GF, Su S (2019b) Emergence and adaptation of H3N2 canine influenza virus from avian influenza virus: an overlooked role of dogs in interspecies transmission. Transbound Emerg Dis 66:842–851

    Article  CAS  PubMed  Google Scholar 

  • Hu RM, Zhou Q, Song WB, Sun EC, Zhang MM, He QG, Chen HC, Wu B, Liu ZF (2015) Novel pseudorabies virus variant with defects in TK, gE and gI protects growing pigs against lethal challenge. Vaccine 33:5733–5740

    Article  CAS  PubMed  Google Scholar 

  • Karger A, Mettenleiter TC (1993) Glycoproteins gIII and gp50 play dominant roles in the biphasic attachment of pseudorabies virus. Virology 194:654

    Article  CAS  PubMed  Google Scholar 

  • Kazutaka K, Kei-Ichi K, Hiroyuki T, Takashi M (2005) MAFFT version 5: improvement in accuracy of multiple sequence alignment. Nucleic Acids Res 33:511–518

    Article  Google Scholar 

  • Kimman TG, De WN, Oei-Lie N, Pol JM, Berns AJ, Gielkens AL (1992) Contribution of single genes within the unique short region of Aujeszky’s disease virus (suid herpesvirus type 1) to virulence, pathogenesis and immunogenicity. J Gen Virol 73:243–251

    Article  CAS  PubMed  Google Scholar 

  • Kong L (2000) Epidemiological situation of pseudorabies and vaccine application in China. Swine Prod 1:39–40

    Google Scholar 

  • Kosakovsky Pond SL, Frost SD (2005) Not so different after all: a comparison of methods for detecting amino acid sites under selection. Mol Biol Evol 22:1208

    Article  PubMed  CAS  Google Scholar 

  • Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lam-Tung N, Schmidt HA, Arndt VH, Bui Quang M (2015) IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol 32:268–274

    Article  CAS  Google Scholar 

  • Li GR, He WT, Zhu HA, Bi YH, Wang RY, Xing G, Zhang C, Zhou JY, Yuen KY, Gao GF, Su S (2018) Origin, genetic diversity, and evolutionary dynamics of novel porcine circovirus 3. Adv Sci 5:10

    CAS  Google Scholar 

  • Luo Y, Li N, Cong X, Wang CH, Du M, Li L, Zhao B, Yuan J, Liu DD, Li S, Li Y, Sun Y, Qiu HJ (2014) Pathogenicity and genomic characterization of a pseudorabies virus variant isolated from Bartha-K61-vaccinated swine population in China. Vet Microbiol 174:107–115

    Article  CAS  PubMed  Google Scholar 

  • Murphy FA, Fauquet CM, Bishop DHL, Ghabrial SA, Jarvis AW, Martelli GP, Mayo MA, Summers MD (2000) The international committee on taxonomy of viruses. Arch Virol Suppl 10:1–586

    Google Scholar 

  • Murrell B, Wertheim JO, Moola S, Weighill T, Scheffler K, Pond SLK (2012) Detecting individual sites subject to episodic diversifying selection. PLoS Genet 8:e1002764

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murrell B, Moola S, Mabona A, Weighill T, Sheward D, Pond SLK, Scheffler K (2013) FUBAR: a fast, unconstrained Bayesian approximation for inferring selection. Mol Biol Evol 30:1196–1205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ober BT, Summerfield A, Mattlinger C, Wiesmuller KH, Jung G, Pfaff E, Saalmuller A, Rziha HJ (1998) Vaccine-induced, pseudorabies virus-specific, extrathymic CD4+CD8+ memory T-helper cells in swine. J Virol 72:4866–4873

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ober B, Teufel BU, Wiesmüller K-H, Jung G, Pfaff E, Saalmüller A, Rziha H (2000) The porcine humoral immune response against pseudorabies virus specifically targets attachment sites on glycoprotein gC. J Virol 74:1752–1760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parker J, Rambaut A, Pybus OG (2008) Correlating viral phenotypes with phylogeny: accounting for phylogenetic uncertainty. Infect Genet Evol 8:239–246

    Article  CAS  PubMed  Google Scholar 

  • Pomeranz LE, Reynolds AE, Hengartner CJ (2005) Molecular biology of pseudorabies virus: impact on neurovirology and veterinary medicine. Microbiol Mol Biol Rev 69:462–500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Provine WB (2004) Ernst Mayr: genetics and speciation. Genetics 167:1041–1046

    PubMed  PubMed Central  Google Scholar 

  • Smith MD, Wertheim JO, Weaver S, Murrell B, Scheffler K, Pond SLK (2015) Less is more: an adaptive branch-site random effects model for efficient detection of episodic diversifying selection. Mol Biol Evol 32:1342–1353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sozzi E, Moreno A, Lelli D, Cinotti S, Alborali GL, Nigrelli A, Luppi A, Bresaola M, Catella A, Cordioli P (2014) Genomic characterization of pseudorabies virus strains isolated in Italy. Transbound Emerg Dis 61:334–340

    Article  CAS  PubMed  Google Scholar 

  • Stamatakis A (2014) RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30:1312–1313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Su S, Wong G, Shi W, Liu J, Lai ACK, Zhou J, Liu W, Bi Y, Gao GF (2016) Epidemiology, genetic recombination, and pathogenesis of coronaviruses. Trends Microbiol 24:490–502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Su S, Gu M, Liu D, Cui J, Gao GF, Zhou J, Liu X (2017) Epidemiology, evolution, and pathogenesis of H7N9 influenza viruses in five epidemic waves since 2013 in China. Trends Microbiol 25:713

    Article  CAS  PubMed  Google Scholar 

  • Sun Y, Luo YZ, Wang CH, Yuan J, Li N, Song K, Qiu HJ (2016) Control of swine pseudorabies in China: opportunities and limitations. Vet Microbiol 183:119–124

    Article  PubMed  Google Scholar 

  • Templeton AR (1980) The theory of speciation via the founder principle. Genetics 94:1011

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tong GZ, Chen HC (1999) Pseudorabies epidemic status and control measures in China. Chin Vet Med 19(1–2):1–2 (in Chinese)

    Google Scholar 

  • Wang CH, Yuan J, Qin HY, Luo Y, Cong X, Li Y, Chen J, Li S, Sun Y, Qiu HJ (2014) A novel gE-deleted pseudorabies virus (PRV) provides rapid and complete protection from lethal challenge with the PRV variant emerging in Bartha-K61-vaccinated swine population in China. Vaccine 32:3379–3385

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Wu CX, Song XR, Chen HC, Liu ZF (2017) Comparison of pseudorabies virus China reference strain with emerging variants reveals independent virus evolution within specific geographic regions. Virology 506:92–98

    Article  CAS  PubMed  Google Scholar 

  • Wu R, Bai C, Sun J, Chang S, Zhang X (2013) Emergence of virulent pseudorabies virus infection in northern China. J Vet Sci 14:363–365

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang HC (2015) Epidemiological situation of swine diseases in 2014 and the epidemiological trend and control strategies in 2015. Swine Ind Sci 32:38–40 (in Chinese)

    Google Scholar 

  • Ye C, Zhang QZ, Tian ZJ, Zheng H, Zhao K, Liu F, Guo JC, Tong W, Jiang CG, Wang SJ (2015) Genomic characterization of emergent pseudorabies virus in China reveals marked sequence divergence: evidence for the existence of two major genotypes. Virology 483:32–43

    Article  CAS  PubMed  Google Scholar 

  • Ye C, Guo JC, Gao JC, Wang TY, Zhao K, Chang XB, Wang Q, Peng JM, Tian ZJ, Cai XH (2016) Genomic analyses reveal that partial sequence of an earlier pseudorabies virus in China is originated from a Bartha-vaccine-like strain. Virology 491:56–63

    Article  CAS  PubMed  Google Scholar 

  • Yue F, Cui S, Zhang C, Yoon KJ (2009) A multiplex PCR for rapid and simultaneous detection of porcine circovirus type 2, porcine parvovirus, porcine pseudorabies virus, and porcine reproductive and respiratory syndrome virus in clinical specimens. Virus Genes 38:392–397

    Article  CAS  PubMed  Google Scholar 

  • Zaripov MM, Morenkov OS, Fodor N, Braun A, Schmatchenko VV, Fodor I (1999) Distribution of B-cell epitopes on the pseudorabies virus glycoprotein B. J Gen Virol 80:537

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Key Research and Development Program of China (2017YFD0500101), the Natural Science Foundation of Jiangsu Province (BK20170721), the China Association for Science and Technology Youth Talent Lift Project (2017-2019).

Author information

Authors and Affiliations

Authors

Contributions

XZ, WZ and SS designed the experiments. XZ, KL, CZ, CW and WZ carried out the experiments. CZ and XZ analyzed the data. JZ, JL, GX, HS, ZS and JG reviewed drafts of the paper, XZ, WZ and SS wrote the paper. SS checked and finalized the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Shuo Su.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Animal and Human Rights Statement

This article does not contain any studies with human participants or animals performed by any of the authors.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhai, X., Zhao, W., Li, K. et al. Genome Characteristics and Evolution of Pseudorabies Virus Strains in Eastern China from 2017 to 2019. Virol. Sin. 34, 601–609 (2019). https://doi.org/10.1007/s12250-019-00140-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12250-019-00140-1

Keywords

  • Pseudorabies virus (PRV)
  • Glycoproteins
  • Founder effect
  • Epidemic
  • Eastern China