Virologica Sinica

, Volume 34, Issue 1, pp 22–29 | Cite as

Regulation of Virus Replication and T Cell Homeostasis by N6-Methyladenosine

  • Jing Yang
  • Hong WangEmail author
  • Wenyan ZhangEmail author


RNA modifications are abundant in eukaryotes, bacteria, and archaea. N6-methyladenosine (m6A), a type of RNA modification mainly found in messenger RNA (mRNA), has significant effects on the metabolism and function of mRNAs. This modification is governed by three types of proteins, namely methyltransferases as “writers”, demethylases as “erasers”, and specific m6A-binding proteins (YTHDF1-3) as “readers”. Further, it is important for the regulation of cell fate and has a critical function in many biological processes including virus replication, stem cell differentiation, and cancer development, and exerts its effect by controlling gene expression. Herein, we summarize recent advances in research on m6A in virus replication and T cell regulation, which is a rapidly emerging field that will facilitate the development of antiviral therapies and the study of innate immunity.


RNA modification N6-methyladenosine (m6A) Virus replication T cell homeostasis 



This study was supported by funding from the National Natural Science Foundation of China (Nos. 81672004, 31270202,81801993, and 81801994), the Jilin University Science and Technology Innovative Research Team (JLUSTIRT, 2017TD-05), the Science and Technology Department of Jilin Province (20160101044JC), the Health and Family Planning Commission of Jilin Province (2013Z066), the Key Laboratory of Molecular Virology, Jilin Province (20102209), and China Postdocotoral Science Foundation (2018M631869).

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no competing interests.

Animal and Human Rights Statement

This article does not contain any studies with human or animal subjects performed by any of the authors.


  1. Aik W, Scotti JS, Choi H, Gong L, Demetriades M, Schofield CJ, Mc Donough MA (2014) Structure of human RNA N(6)-methyladenine demethylase ALKBH5 provides insights into its mechanisms of nucleic acid recognition and demethylation. Nucleic Acids Res 42:4741–4754CrossRefPubMedPubMedCentralGoogle Scholar
  2. Bartosovic M, Molares HC, Gregorova P, Hrossova D, Kudla G, Vanacova S (2017) N6-methyladenosine demethylase FTO targets pre-mRNAs and regulates alternative splicing and 3′-end processing. Nucleic Acids Res 45:11356–11370CrossRefPubMedPubMedCentralGoogle Scholar
  3. Batista PJ, Molinie B, Wang J, Qu K, Zhang J, Li L, Bouley DM, Lujan E, Haddad B, Daneshvar K, Carter AC, Flynn RA, Zhou C, Lim KS, Dedon P, Wernig M, Mullen AC, Xing Y, Giallourakis CC, Chang HY (2014) m(6)A RNA modification controls cell fate transition in mammalian embryonic stem cells. Cell Stem Cell 15:707–719CrossRefPubMedPubMedCentralGoogle Scholar
  4. Bokar JA, Shambaugh ME, Polayes D, Matera AG, Rottman FM (1997) Purification and cDNA cloning of the AdoMet-binding subunit of the human mRNA (N6-adenosine)-methyltransferase. RNA 3:1233–1247PubMedPubMedCentralGoogle Scholar
  5. Brocard M, Ruggieri A, Locker N (2017) m6A RNA methylation, a new hallmark in virus-host interactions. J Gener Virol 98:2207–2214CrossRefGoogle Scholar
  6. Canaani D, Kahana C, Lavi S, Groner Y (1979) Identification and mapping of N6-methyladenosine containing sequences in simian virus 40 RNA. Nucleic Acids Res 6:2879–2899CrossRefPubMedPubMedCentralGoogle Scholar
  7. Cao G, Li HB, Yin Z, Flavell RA (2016) Recent advances in dynamic m6A RNA modification. Open Biology 6:160003CrossRefPubMedPubMedCentralGoogle Scholar
  8. Che KF, Sabado RL, Shankar EM, Tjomsland V, Messmer D, Bhardwaj N, Lifson JD, Larsson M (2010) HIV-1 impairs in vitro priming of naive T cells and gives rise to contact-dependent suppressor T cells. Eur J Immunol 40:2248–2258CrossRefPubMedPubMedCentralGoogle Scholar
  9. Courtney DG, Kennedy EM, Dumm RE, Bogerd HP, Tsai K, Heaton NS, Cullen BR (2017) Epitranscriptomic enhancement of influenza A virus gene expression and replication. Cell Host Microbe 22(3):377–386.e5CrossRefPubMedPubMedCentralGoogle Scholar
  10. Driggers RW, Ho CY, Korhonen EM, Kuivanen S, Jääskeläinen AJ, Smura T, Rosenberg A, Hill DA, DeBiasi RL, Vezina G, Timofeev J, Rodriguez FJ, Levanov L, Razak J, Iyengar P, Hennenfent A, Kennedy R, Lanciotti R, du Plessis A, Vapalahti O (2016) Zika virus infection with prolonged maternal viremia and fetal brain abnormalities. N Engl J Med 374:2142–2151CrossRefPubMedGoogle Scholar
  11. Du H, Zhao Y, He J, Zhang Y, Xi H, Liu M, Ma J, Wu L (2016) YTHDF2 destabilizes m(6)A-containing RNA through direct recruitment of the CCR4-NOT deadenylase complex. Nat Commun 7:12626CrossRefPubMedPubMedCentralGoogle Scholar
  12. Durbin AF, Wang C, Marcotrigiano J, Gehrke L (2016) RNAs containing modified nucleotides fail to trigger RIG-I conformational changes for innate immune signaling mBio 7:00833–110816Google Scholar
  13. Engel M, Chen A (2018) The emerging role of mRNA methylation in normal and pathological behavior. Genes Brain Behav 17:e12428CrossRefPubMedGoogle Scholar
  14. Finkel D, Groner Y (1983) Methylations of adenosine residues (m6A) in pre-mRNA are important for formation of late simian virus 40 mRNAs. Virology 131:409–425CrossRefPubMedGoogle Scholar
  15. Fu Y, Jia G, Pang X, Wang RN, Wang X, Li CJ, Smemo S, Dai Q, Bailey KA, Nobrega MA, Han KL, Cui Q, He C (2013) FTO-mediated formation of N6-hydroxymethyladenosine and N6-formyladenosine in mammalian RNA. Nat Commun 4:1798CrossRefPubMedPubMedCentralGoogle Scholar
  16. Gokhale NS, McIntyre ABR, McFadden MJ, Roder AE, Kennedy EM, Gandara JA, Hopcraft SE, Quicke KM, Vazquez C, Willer J, Ilkayeva OR, Law BA, Holley CL, Garcia-Blanco MA, Evans MJ, Suthar MS, Bradrick SS, Mason CE, Horner SM (2016) N6-methyladenosine in Flaviviridae viral RNA genomes regulates infection. Cell Host Microbe 20:654–665CrossRefPubMedPubMedCentralGoogle Scholar
  17. Gonzales-van Horn SR, Sarnow P (2017) Making the mark: the role of adenosine modifications in the life cycle of RNA viruses. Cell Host Microbe 21:661–669CrossRefPubMedPubMedCentralGoogle Scholar
  18. Hesser C, Karijolich J, Dominissini D, He C, Glaunsinger BA (2018) N6-methyladenosine modification and the YTHDF2 reader protein play cell type specific roles in lytic viral gene expression during Kaposi’s sarcoma-associated herpesvirus infection. PLoS Pathog 14:e1006995CrossRefPubMedPubMedCentralGoogle Scholar
  19. Huang J, Yin P (2018) Structural insights into N(6)-methyladenosine (m(6)A) modification in the transcriptome. Genom Proteom Bioinform 16:85–98CrossRefGoogle Scholar
  20. Huang J, Dong X, Gong Z, Qin LY, Yang S, Zhu YL, Wang X, Zhang D, Zou T, Yin P, Tang C (2018) Solution structure of the RNA recognition domain of METTL3-METTL14 N(6)-methyladenosine methyltransferase. Protein Cell. Google Scholar
  21. Imam H, Khan M, Gokhale NS, McIntyre ABR, Kim GW, Jang JY, Kim SJ, Mason CE, Horner SM, Siddiqui A (2018) N6-methyladenosine modification of hepatitis B virus RNA differentially regulates the viral life cycle. Proc Natl Acad Sci USA 115(135):8829–8834CrossRefPubMedGoogle Scholar
  22. Ivanova I, Much C, Di Giacomo M, Azzi C, Morgan M, Moreira PN, Monahan J, Carrieri C, Enright AJ, O’Carroll D (2017) The RNA m(6)A reader YTHDF2 is essential for the post-transcriptional regulation of the maternal transcriptome and oocyte competence. Mol Cell 67:1059–1067CrossRefPubMedPubMedCentralGoogle Scholar
  23. Kane SE, Beemon K (1985) Precise localization of m6A in Rous sarcoma virus RNA reveals clustering of methylation sites: implications for RNA processing. Mol Cell Biol 5:2298–2306CrossRefPubMedPubMedCentralGoogle Scholar
  24. Kariko K, Buckstein M, Ni H, Weissman D (2005) Suppression of RNA recognition by Toll-like receptors: the impact of nucleoside modification and the evolutionary origin of RNA. Immunity 23:165–175CrossRefPubMedGoogle Scholar
  25. Kennedy EM, Bogerd HP, Kornepati AV, Kang D, Ghoshal D, Marshall JB, Poling BC, Tsai K, Gokhale NS, Horner SM, Cullen BR (2017) Posttranscriptional m(6)A editing of HIV-1 mRNAs enhances viral gene expression. Cell Host Microbe 22:830CrossRefPubMedPubMedCentralGoogle Scholar
  26. Krug RM, Morgan MA, Shatkin AJ (1976) Influenza viral mRNA contains internal N6-methyladenosine and 5′-terminal 7-methylguanosine in cap structures. J Virol 20:45–53PubMedPubMedCentralGoogle Scholar
  27. Li A, Chen YS, Ping XL, Yang X, Xiao W, Yang Y, Sun HY, Zhu Q, Baidya P, Wang X, Bhattarai DP, Zhao YL, Sun BF, Yang YG (2017a) Cytoplasmic m(6)A reader YTHDF3 promotes mRNA translation. Cell Res 27:444–447CrossRefPubMedPubMedCentralGoogle Scholar
  28. Li HB, Tong J, Zhu S, Batista PJ, Duffy EE, Zhao J, Bailis W, Cao G, Kroehling L, Chen Y, Wang G, Broughton JP, Chen YG, Kluger Y, Simon MD, Chang HY, Yin Z, Flavell RA (2017b) m(6)A mRNA methylation controls T cell homeostasis by targeting the IL-7/STAT5/SOCS pathways. Nature 548:338–342CrossRefPubMedPubMedCentralGoogle Scholar
  29. Lichinchi G, Gao S, Saletore Y, Gonzalez GM, Bansal V, Wang Y, Mason CE, Rana TM (2016a) Dynamics of the human and viral m(6)A RNA methylomes during HIV-1 infection of T cells. Nat Microbiol 1:16011CrossRefPubMedPubMedCentralGoogle Scholar
  30. Lichinchi G, Zhao BS, Wu Y, Lu Z, Qin Y, He C, Rana TM (2016b) Dynamics of human and viral RNA methylation during Zika virus infection. Cell Host Microbe 20:666–673CrossRefPubMedPubMedCentralGoogle Scholar
  31. Liu J, Yue Y, Han D, Wang X, Fu Y, Zhang L, Jia G, Yu M, Lu Z, Deng X, Dai Q, Chen W, He C (2014) A METTL3-METTL14 complex mediates mammalian nuclear RNA N6-adenosine methylation. Nat Chem Biol 10:93–95CrossRefPubMedGoogle Scholar
  32. Liu N, Dai Q, Zheng G, He C, Parisien M, Pan T (2015) N(6)-methyladenosine-dependent RNA structural switches regulate RNA-protein interactions. Nature 518:560–564CrossRefPubMedPubMedCentralGoogle Scholar
  33. Lu W, Tirumuru N, St Gelais C, Koneru PC, Liu C, Kvaratskhelia M, He C, Wu L (2018) N(6)-methyladenosine-binding proteins suppress HIV-1 infectivity and viral production. J Biol Chem 293:12992–13005CrossRefPubMedGoogle Scholar
  34. Meyer KD, Patil DP, Zhou J, Zinoviev A, Skabkin MA, Elemento O, Pestova TV, Qian SB, Jaffrey SR (2015) 5′ UTR m(6)A promotes cap-independent translation. Cell 163:999–1010CrossRefPubMedPubMedCentralGoogle Scholar
  35. Miyauchi K, Sugimoto-Ishige A, Harada Y, Adachi Y, Usami Y, Kaji T, Inoue K, Hasegawa H, Watanabe T, Hijikata A, Fukuyama S, Maemura T, Okada-Hatakeyama M, Ohara O, Kawaoka Y, Takahashi Y, Takemori T, Kubo M (2016) Protective neutralizing influenza antibody response in the absence of T follicular helper cells. Nat Immunol 17:1447–1458CrossRefPubMedGoogle Scholar
  36. Narayan P, Ayers DF, Rottman FM, Maroney PA, Nilsen TW (1987) Unequal distribution of N6-methyladenosine in influenza virus mRNAs. Mol Cell Biol 7:1572–1575CrossRefPubMedPubMedCentralGoogle Scholar
  37. Sanchez-Vasquez E, AlataJimenez N, Vazquez NA, Strobl-Mazzulla PH (2018) Emerging role of dynamic RNA modifications during animal development. Mech Dev. PubMedGoogle Scholar
  38. Scholler E, Weichmann F, Treiber T, Ringle S, Treiber N, Flatley A, Feederle R, Bruckmann A, Meister G (2018) Interactions, localization, and phosphorylation of the m(6)A generating METTL3-METTL14-WTAP complex. RNA 24:499–512CrossRefPubMedGoogle Scholar
  39. Shi H, Wang X, Lu Z, Zhao BS, Ma H, Hsu PJ, Liu C, He C (2017) YTHDF3 facilitates translation and decay of N(6)-methyladenosine-modified RNA. Cell Res 27:315–328CrossRefPubMedPubMedCentralGoogle Scholar
  40. Smith KN, Mailliard RB, Piazza PA, Fischer W, Korber BT, Fecek RJ, Ratner D, Gupta P, Mullins JI, Rinaldo CR (2016) Effective cytotoxic T lymphocyte targeting of persistent HIV-1 during antiretroviral therapy requires priming of naive CD8 + T Cells. mBio 7:00416–00473Google Scholar
  41. Tirumuru N, Zhao BS, Lu W, Lu Z, He C, Wu L (2016) N(6)-methyladenosine of HIV-1 RNA regulates viral infection and HIV-1 Gag protein expression. eLife 5:15528CrossRefGoogle Scholar
  42. Tong J, Cao G, Zhang T, Sefik E, Amezcua Vesely MC, Broughton JP, Zhu S, Li H, Li B, Chen L, Chang HY, Su B, Flavell RA, Li HB (2018) m(6)A mRNA methylation sustains Treg suppressive functions. Cell Res 28:253–256CrossRefPubMedPubMedCentralGoogle Scholar
  43. Tsai K, Courtney DG, Cullen BR (2018) Addition of m6A to SV40 late mRNAs enhances viral structural gene expression and replication. PLoS Pathog 14:e1006919CrossRefPubMedPubMedCentralGoogle Scholar
  44. Wang X, Zhao BS, Roundtree IA, Lu Z, Han D, Ma H, Weng X, Chen K, Shi H, He C (2015) N(6)-methyladenosine modulates messenger RNA translation efficiency. Cell 161:1388–1399CrossRefPubMedPubMedCentralGoogle Scholar
  45. Warda AS, Kretschmer J, Hackert P, Lenz C, Urlaub H, Höbartner C, Sloan KE, Bohnsack MT (2017) Human METTL16 is a N(6)-methyladenosine (m(6)A) methyltransferase that targets pre-mRNAs and various non-coding RNAs. EMBO Rep 18:2004–2014CrossRefPubMedPubMedCentralGoogle Scholar
  46. Wei CM, Moss B (1975) Methylated nucleotides block 5′-terminus of vaccinia virus messenger RNA. Proc Natl Acad Sci USA 72:318–322CrossRefPubMedGoogle Scholar
  47. Wu B, Li L, Huang Y, Ma J, Min J (2017) Readers, writers and erasers of N(6)-methylated adenosine modification. Curr Opin Struct Biol 47:67–76CrossRefPubMedGoogle Scholar
  48. Xu C, Wang X, Liu K, Roundtree IA, Tempel W, Li Y, Lu Z, He C, Min J (2014) Structural basis for selective binding of m6A RNA by the YTHDC1 YTH domain. Nat Chem Biol 10:927–929CrossRefPubMedGoogle Scholar
  49. Ye F (2017) RNA N(6)-adenosine methylation (m(6)A) steers epitranscriptomic control of herpesvirus replication. Inflamm Cell Signal 4:e1604PubMedPubMedCentralGoogle Scholar
  50. Ye F, Chen ER, Nilsen TW (2017) Kaposi’s sarcoma-associated herpesvirus utilizes and manipulates RNA N(6)-adenosine methylation to promote lytic replication. J Virol 91:00417–00466Google Scholar
  51. Yue Y, Liu J, He C (2015) RNA N6-methyladenosine methylation in post-transcriptional gene expression regulation. Genes Dev 29:1343–1355CrossRefPubMedPubMedCentralGoogle Scholar
  52. Zhao B, Nachtergaele S, Roundtree IA, He C (2017) Our views of dynamic N(6)-methyladenosine RNA methylation. RNA 24:268–272CrossRefPubMedGoogle Scholar
  53. Zheng G, Dahl JA, Niu Y, Fedorcsak P, Huang CM, Li CJ, Vågbø CB, Shi Y, Wang WL, Song SH, Lu Z, Bosmans RP, Dai Q, Hao YJ, Yang X, Zhao WM, Tong WM, Wang XJ, Bogdan F, Furu K, Fu Y, Jia G, Zhao X, Liu J, Krokan HE, Klungland A, Yang YG, He C (2013) ALKBH5 is a mammalian RNA demethylase that impacts RNA metabolism and mouse fertility. Mol Cell 49:18–29CrossRefPubMedGoogle Scholar
  54. Zheng Q, Hou J, Zhou Y, Li Z, Cao X (2017) The RNA helicase DDX46 inhibits innate immunity by entrapping m(6)A-demethylated antiviral transcripts in the nucleus. Nat Immunol 18:1094–1103CrossRefPubMedGoogle Scholar
  55. Zhou J, Wan J, Gao X, Zhang X, Jaffrey SR, Qian SB (2015) Dynamic m(6)A mRNA methylation directs translational control of heat shock response. Nature 526:591–594CrossRefPubMedPubMedCentralGoogle Scholar
  56. Zhu C, Yi C (2014) Switching demethylation activities between AlkB family RNA/DNA demethylases through exchange of active-site residues. Angew Chem Int Ed Engl 53:3659–3662CrossRefPubMedGoogle Scholar

Copyright information

© Wuhan Institute of Virology, CAS 2019

Authors and Affiliations

  1. 1.Institute of Virology and AIDS ResearchThe First Hospital of Jilin UniversityChangchunChina

Personalised recommendations