Recent Advances in Animal Models of Zika Virus Infection



An infection by Zika virus (ZIKV), a mosquito-borne flavivirus, broke out in South American regions in 2015, and recently showed a tendency of spreading to North America and even worldwide. ZIKV was first detected in 1947 and only 14 human infection cases were reported until 2007. This virus was previously observed to cause only mild flu-like symptoms. However, recent ZIKV infections might be responsible for the increasing cases of neurological disorders such as Guillain-Barré syndrome and congenital defects, including newborn microcephaly. Therefore, researchers have established several animal models to study ZIKV transmission and pathogenesis, and test therapeutic candidates. This review mainly summarizes the reported animal models of ZIKV infection, including mice and non-human primates.


Zika virus Flavivirus Rodent models Non-human primate models 



This work was supported by the National Natural Science Foundation of China (31770176), the Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher learning, and the Shanghai Rising-Star Program (17QA1403200) for QL.

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.

Animal and Human Rights Statement

This article does not contain any studies with human or animal subjects performed by any of the authors.


  1. Adams Waldorf KM, Stencel-Baerenwald JE, Kapur RP, Studholme C, Boldenow E, Vornhagen J, Baldessari A, Dighe MK, Thiel J, Merillat S, Armistead B (2016) Fetal brain lesions after subcutaneous inoculation of Zika virus in a pregnant nonhuman primate. Nat Med 22:1256–1259CrossRefPubMedPubMedCentralGoogle Scholar
  2. Bautista LE, Sethi AK (2016) Association between Guillain–Barré syndrome and Zika virus infection. Lancet 387:2599–2600CrossRefPubMedGoogle Scholar
  3. Bayer A, Lennemann NJ, Ouyang Y, Bramley JC, Morosky S, Marques ET Jr, Cherry S, Sadovsky Y, Coyne CB (2016) Type III interferons produced by human placental trophoblasts confer protection against Zika virus infection. Cell Host Microbe 19:705–712CrossRefPubMedPubMedCentralGoogle Scholar
  4. Cao-Lormeau VM, Blake A, Mons S, Lastère S, Roche C, Vanhomwegen J, Dub T, Baudouin L, Teissier A, Larre P, Vial AL (2016) Guillain–Barré Syndrome outbreak associated with Zika virus infection in French Polynesia: a case–control study. Lancet 387:1531–1539CrossRefPubMedPubMedCentralGoogle Scholar
  5. Deng YQ, Zhang NN, Li XF, Wang YQ, Tian M, Qiu YF, Fan JW, Hao JN, Huang XY, Dong HL, Fan H, Wang YG, Zhang FC, Tong YG, Xu Z, Qin CF (2017) Intranasal infection and contact transmission of Zika virus in guinea pigs. Nat Commun 8:1648CrossRefPubMedPubMedCentralGoogle Scholar
  6. Dick GW, Kitchen SF, Haddow AJ (1952) Zika virus. I. Isolations and serological specificity. Trans R Soc Trop Med Hyg 46:509–520CrossRefPubMedGoogle Scholar
  7. Dowall SD, Graham VA, Rayner E, Atkinson B, Hall G, Watson RJ, Bosworth A, Bonney LC, Kitchen S, Hewson R (2016) A susceptible mouse model for Zika virus infection. PLoS Negl Trop Dis 10:e0004658CrossRefPubMedPubMedCentralGoogle Scholar
  8. Drake VJ, Koprowski SL, Lough JW, Smith SM (2006) Gastrulating chick embryo as a model for evaluating teratogenicity: a comparison of three approaches. Birth Defects Res A Clin Mol Teratol 76:66–71CrossRefPubMedGoogle Scholar
  9. Dudley DM, Aliota MT, Mohr EL, Weiler AM, Lehrer-Brey G, Weisgrau KL, Mohns MS, Breitbach ME, Rasheed MN, Newman CM, Gellerup DD (2016) A rhesus macaque model of Asian-lineage Zika virus infection. Nat Commun 7:12204CrossRefPubMedPubMedCentralGoogle Scholar
  10. Duffy MR, Chen TH, Hancock WT, Powers AM, Kool JL, Lanciotti RS, Pretrick M, Marfel M, Holzbauer S, Dubray C, Guillaumot L (2009) Zika virus outbreak on Yap Island, Federated States of Micronesia. N Engl J Med 360:2536–2543CrossRefPubMedGoogle Scholar
  11. Goodfellow FT, Tesla B, Simchick G, Zhao Q, Hodge T, Brindley MA, Stice SL (2016) Zika virus induced mortality and microcephaly in chicken embryos. Stem Cells Dev 25:1691–1697CrossRefPubMedGoogle Scholar
  12. Govero J, Esakky P, Scheaffer SM, Fernandez E, Drury A, Platt DJ, Gorman MJ, Richner JM, Caine EA, Salazar V, Moley KH (2016) Zika virus infection damages the testes in mice. Nature 540:438–442CrossRefPubMedPubMedCentralGoogle Scholar
  13. Haddow AD, Nalca A, Rossi FD, Miller LJ, Wiley MR, Perez-Sautu U, Washington SC, Norris SL, Wollen-Roberts SE, Shamblin JD, Kimmel AE (2017) High infection rates for adult macaques after intravaginal or intrarectal inoculation with Zika virus. Emerg Infect Dis 23:1274–1281CrossRefPubMedPubMedCentralGoogle Scholar
  14. Honda K, Taniguchi T (2006) IRFs: master regulators of signalling by Toll-like receptors and cytosolic pattern-recognition receptors. Nat Rev Immunol 6:644–658CrossRefPubMedGoogle Scholar
  15. Ko MS (2001) Embryogenomics: developmental biology meets genomics. Trends Biotechnol 19:511–518CrossRefPubMedGoogle Scholar
  16. Kumar M, Krause KK, Azouz F, Nakano E, Nerurkar VR (2017) A guinea pig model of Zika virus infection. Virol J 14:75CrossRefPubMedPubMedCentralGoogle Scholar
  17. Lazear HM, Govero J, Smith AM, Platt DJ, Fernandez E, Miner JJ, Diamond MS (2016) A mouse model of Zika virus pathogenesis. Cell Host Microbe 19:720–730CrossRefPubMedPubMedCentralGoogle Scholar
  18. Li G, Poulsen M, Fenyvuesvolgyi C, Yashiroda Y, Yoshida M, Simard JM, Gallo RC, Zhao RY (2017) Characterization of cytopathic factors through genome-wide analysis of the Zika viral proteins in fission yeast. Proc Natl Acad Sci USA 114:E376–E385CrossRefPubMedPubMedCentralGoogle Scholar
  19. Lugo-Roman LA, Rico PJ, Sturdivant R, Burks R, Settle TL (2010) Effects of serial anesthesia using ketamine or ketamine/medetomidine on hematology and serum biochemistry values in rhesus macaques (Macaca mulatta). J Med Primatol 39:41–49CrossRefPubMedGoogle Scholar
  20. Ma W, Li S, Ma S, Jia L, Zhang F, Zhang Y, Zhang J, Wong G, Zhang S, Lu X, Liu M (2016) Zika virus causes testis damage and leads to male infertility in mice. Cell 167(1511–1524):e10Google Scholar
  21. Macnamara FN (1954) Zika virus: a report on three cases of human infection during an epidemic of jaundice in Nigeria. Trans R Soc Trop Med Hyg 48:139–145CrossRefPubMedGoogle Scholar
  22. Manangeeswaran M, Ireland DD, Verthelyi D (2016) Zika (PRVABC59) infection is associated with T cell infiltration and neurodegeneration in CNS of immunocompetent neonatal C57Bl/6 mice. PLoS Pathog 12:e1006004CrossRefPubMedPubMedCentralGoogle Scholar
  23. Medzhitov R (2001) Toll-like receptors and innate immunity. Nat Rev Immunol 1:135–145CrossRefPubMedGoogle Scholar
  24. Miner JJ, Cao B, Govero J, Smith AM, Fernandez E, Cabrera OH, Garber C, Noll M, Klein RS, Noguchi KK, Mysorekar IU (2016) Zika virus infection during pregnancy in mice causes placental damage and fetal demise. Cell 165:1081–1091CrossRefPubMedPubMedCentralGoogle Scholar
  25. Osuna CE, Lim SY, Deleage C, Griffin BD, Stein D, Schroeder LT, Omange R, Best K, Luo M, Hraber PT, Andersen-Elyard H (2016) Zika viral dynamics and shedding in rhesus and cynomolgus macaques. Nat Med 22:1448–1455CrossRefPubMedPubMedCentralGoogle Scholar
  26. Paploski IA, Prates AP, Cardoso CW, Kikuti M, Silva MM, Waller LA, Reis MG, Kitron U, Ribeiro GS (2016) time lags between exanthematous illness attributed to Zika virus, Guillain–Barré Syndrome, and microcephaly, Salvador, Brazil. Emerg Infect Dis 22:1438–1444CrossRefPubMedPubMedCentralGoogle Scholar
  27. Pinto AK, Brien JD, Lam CY, Johnson S, Chiang C, Hiscott J, Sarathy VV, Barrett AD, Shresta S, Diamond MS (2015) Defining new therapeutics using a more immunocompetent mouse model of antibody-enhanced dengue virus infection. MBio 6:e01316–1315CrossRefGoogle Scholar
  28. Qian X, Nguyen HN, Song MM, Hadiono C, Ogden SC, Hammack C, Yao B, Hamersky GR, Jacob F, Zhong C, Yoon KJ (2016) Brain-region-specific organoids using mini-bioreactors for modeling ZIKV exposure. Cell 165:1238–1254CrossRefPubMedPubMedCentralGoogle Scholar
  29. Sarathy VV, White M, Li L, Gorder SR, Pyles RB, Campbell GA, Milligan GN, Bourne N, Barrett AD (2015) A lethal murine infection model for dengue virus 3 in AG129 mice deficient in type I and II interferon receptors leads to systemic disease. J Virol 89:1254–1266CrossRefPubMedGoogle Scholar
  30. Schoggins JW, Rice CM (2011) Interferon-stimulated genes and their antiviral effector functions. Curr Opin Virol 1:519–525CrossRefPubMedPubMedCentralGoogle Scholar
  31. Sejvar JJ, Baughman AL, Wise M, Morgan OW (2011) Population incidence of Guillain–Barré syndrome: a systematic review and meta-analysis. Neuroepidemiology 36:123–133CrossRefPubMedPubMedCentralGoogle Scholar
  32. Sheehan KC, Lai KS, Dunn GP, Bruce AT, Diamond MS, Heutel JD, Dungo-Arthur C, Carrero JA, White JM, Hertzog PJ, Schreiber RD (2006) Blocking monoclonal antibodies specific for mouse IFN-alpha/beta receptor subunit 1 (IFNAR-1) from mice immunized by in vivo hydrodynamic transfection. J Interferon Cytokine Res 26:804–819CrossRefPubMedGoogle Scholar
  33. Shresta S, Kyle JL, Snider HM, Basavapatna M, Beatty PR, Harris E (2004) Interferon-dependent immunity is essential for resistance to primary dengue virus infection in mice, whereas T- and B-cell-dependent immunity are less critical. J Virol 78:2701–2710CrossRefPubMedPubMedCentralGoogle Scholar
  34. Siddharthan V, Van Wettere AJ, Li R, Miao J, Wang Z, Morrey JD, Julander JG (2017) Zika virus infection of adult and fetal STAT2 knock-out hamsters. Virology 507:89–95CrossRefPubMedGoogle Scholar
  35. Smith DR, Hollidge B, Daye S, Zeng X, Blancett C, Kuszpit K, Bocan T, Koehler JW, Coyne S, Minogue T, Kenny T (2017) Neuropathogenesis of Zika virus in a highly susceptible immunocompetent mouse model after antibody blockade of type I interferon. PLoS Negl Trop Dis 11:e0005296CrossRefPubMedPubMedCentralGoogle Scholar
  36. Tang H, Hammack C, Ogden SC, Wen Z, Qian X, Li Y, Yao B, Shin J, Zhang F, Lee EM, Christian KM (2016) Zika virus infects human cortical neural progenitors and attenuates their growth. Cell Stem Cell 18:587–590CrossRefPubMedPubMedCentralGoogle Scholar
  37. Thibodeaux BA, Garbino NC, Liss NM, Piper J, Blair CD, Roehrig JT (2012) A small animal peripheral challenge model of yellow fever using interferon-receptor deficient mice and the 17D-204 vaccine strain. Vaccine 30:3180–3187CrossRefPubMedPubMedCentralGoogle Scholar
  38. Woodruff AM, Goodpasture EW (1931) The susceptibility of the chorio-allantoic membrane of chick embryos to infection with the Fowl-Pox virus. Am J Pathol 7:209–222.5Google Scholar
  39. Yockey LJ, Varela L, Rakib T, Khoury-Hanold W, Fink SL, Stutz B, Szigeti-Buck K, Van den Pol A, Lindenbach BD, Horvath TL, Iwasaki A (2016) Vaginal exposure to Zika virus during pregnancy leads to fetal brain infection. Cell 166:1247–1256.e4Google Scholar
  40. Zmurko J, Marques RE, Schols D, Verbeken E, Kaptein SJ, Neyts J (2016) The viral polymerase inhibitor 7-deaza-2′-C-methyladenosine is a potent inhibitor of in vitro Zika virus replication and delays disease progression in a robust mouse infection model. PLoS Negl Trop Dis 10:e0004695CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Wuhan Institute of Virology, CAS and Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Shanghai Institute of Immunology, Department of Immunology and MicrobiologyShanghai Jiao Tong University School of MedicineShanghaiChina

Personalised recommendations