Allweiss L, Dandri M. 2016. Experimental in vitro and in vivo models for the study of human hepatitis B virus infection. J Hepatol, 64: S17–S31.
CAS
PubMed
Article
Google Scholar
Beck J, Nassal M. 2007. Hepatitis B virus replication. World J Gastroenterol, 13: 48–64.
CAS
PubMed
PubMed Central
Article
Google Scholar
Belloni L, Pollicino T, De Nicola F, Guerrieri F, Raffa G, Fanciulli M, Raimondo G, Levrero M. 2009. Nuclear HBx binds the HBV minichromosome and modifies the epigenetic regulation of cccDNA fuction. Proc Natl Acad Sci USA, 106: 19975–19979.
CAS
PubMed
PubMed Central
Article
Google Scholar
Cai D, Mills C, Yu W, Yan R, Aldrich CE, Saputelli JR, Mason WS, Xu X, Guo JT, Block TM, Cuconati A, Guo H. 2012. Identification of disubstituted sulfonamide compounds as specific inhibitors of hepatitis B virus covalently closed circular DNA formation. Antimicrob Agents Chemother, 56: 4277–4288.
CAS
PubMed
PubMed Central
Article
Google Scholar
Cui X, McAllister R, Boregowda R, Sohn JA, Cortes Ledesma F, Caldecott KW, Seeger C, Hu J. 2015. Does Tyrosyl DNA Phosphodiesterase-2 Play a Role in Hepatitis B Virus Genome Repair?. PLoS One, 10: e0128401.
PubMed
PubMed Central
Article
CAS
Google Scholar
Decorsière A, Mueller H, van Breugel PC, Abdul F, Gerossier L, Beran RK, Livingston CM, Niu C, Fletcher SP, Hantz O, Strubin M. 2016. Hepatitis B virus X protein identifies the Smc5/6 complex as a host restriction factor. Nature, 531: 386–389.
PubMed
Article
CAS
Google Scholar
Feng H, Hu K. 2009. Structural Characteristics and Molecular Mechanism of Hepatitis B Virus Reverse Transcriptase. Virol Sin, 24: 509–517.
CAS
Article
Google Scholar
Fu Y, Foden JA, Khayter C, Maeder ML, Reyon D, Joung JK, Sander JD. 2013. High-frequency off-target mutagenesis in-duced by CRISPR-Cas nucleases in human cells. Nat Biotechnol, 31: 822–826.
CAS
PubMed
PubMed Central
Article
Google Scholar
Gao W, Hu J. 2007. Formation of hepatitis B virus covalently closed circular DNA: removal of genome-linked protein. J Virol, 81: 6164–6174.
CAS
PubMed
PubMed Central
Article
Google Scholar
Guo L, Wang X, Ren L, Zeng M, Wang S, Weng Y, Tang Z, Wang X, Tang Y, Hu H, Li M, Zhang C, Liu C. 2014. HBx affects CUL4-DDB1 function in both positive and negative manners. Biochem Biophys Res Commun, 450: 1492–1497.
CAS
PubMed
Article
Google Scholar
Guo H, Jiang D, Zhou T, Cuconati A, Block TM, Guo JT. 2007. Characterizat ion of the intracellular deproteinized relaxed c ircular DNA of hepatit is B virus: an intermediate of covalently closed circular DNA formation. J Virol, 81: 12472–12484.
CAS
PubMed
PubMed Central
Article
Google Scholar
Guo H, Mao R, Block TM, Guo JT. 2010. Production and function of the cytoplasmic deproteinized relaxed circular DNA of hepadnaviruses. J Virol, 84: 387–396.
CAS
PubMed
Article
Google Scholar
Guo X, Chen P, Hou X, Xu W, Wang D, Wang TY, Zhang L, Zheng G, Gao ZL, He CY, Zhou B, Chen ZY. 2016. The recombined cccDNA produced using minicircle technology mimicked HBV genome in structure and function closely. Scientific Reports, 6: 25552.
CAS
PubMed
PubMed Central
Article
Google Scholar
Hayes CN, Chayama K. 2016. HBV culture and infections systems. Hepatol Int, 10: 559–566.
PubMed
Article
Google Scholar
Hong X, Kim ES, Guo H. 2017. Epigenetic Regulation of Hepatitis B Virus Covalently Closed Circular DNA: Implications for Epigenetic Therapy against Chronic Hepatitis B. Hepatology. doi: 10.1002/hep.29479.
Google Scholar
Keeffe EB, Dieterich DT, Han SH, Jacobson IM, Martin P, Schiff ER, Tobias H. 2008. A treatment algorithm for the management of chronic hepatitis B virus infection in the United States: 2008 update. Clin Gastroenterol Hepatol, 6: 1315–1341.
CAS
PubMed
Article
Google Scholar
Kitamura K, Wang Z, Chowdhury S, Simadu M, Koura M, Muramatsu M. 2013. Uracil DNA Glycosylase Counteracts APOBEC3G-Induced Hypermutation of Hepatitis B Viral Genomes: Excision Repair of Covalently Closed Circular DNA. PLoS Pathog, 9: e1003361.
CAS
PubMed
PubMed Central
Article
Google Scholar
Königer C, Wingert I, Marsmann M, Rösler C, Beck J, Nassal M. 2014. Involvement of the host DNA-repair enzyme TDP2 in formation of the covalently closed circular DNA persistence reservoir of hepatitis B viruses. Proc Natl Acad Sci USA, 111: E4244–E4253.
PubMed
PubMed Central
Article
CAS
Google Scholar
Ladner SK, Otto MJ, Barker CS, Zaifert K, Wang GH, Guo JT, Seeger C, King RW. 1997. Inducible Expression of Human Hepatitis B Virus (HBV) in Stably Transfected Hepatoblastoma Cells: a Novel System for Screening Potential Inhibitors of HBV Replication. Antimicrob Agents Chemother, 41: 1715–1720.
CAS
PubMed
PubMed Central
Article
Google Scholar
Li F, Cheng L, Murphy CM, Reszka-Blanco NJ, Wu Y, Chi L, Hu J, Su L. 2016. Minicircle HBV cccDNA with a Gaussia luciferase reporter for investigating HBV cccDNA biology and developing cccDNA-targeting drugs. Scientific Reports, 6: 36483.
CAS
PubMed
PubMed Central
Article
Google Scholar
Lin SR, Yang HC, Kuo YT, Liu CJ, Yang TY, Sung KC, Lin YY, Wang HY, Wang CC, Shen YC, Wu FY, Kao JH, Chen DS, Chen PJ. 2014. The CRISPR/Cas9 system facilitates clearance of the intrahepatic HBV templates in vivo. Molecular therapy Nucleic acids, 3: e186.
CAS
PubMed
PubMed Central
Article
Google Scholar
Lilley CE, Schwartz RA,Weitzman MD. 2007. Using or abusing: viruses and the cellular DNA damage response. Trends Microbiol, 15: 119–126.
CAS
PubMed
Article
Google Scholar
Lin GG, Zhang K, Li JM. 2015. Application of CRISPR/Cas9 Technology to HBV. Int J Mol Sci, 16: 26077–26086.
CAS
PubMed
PubMed Central
Article
Google Scholar
Liu Y, Li J, Chen J, Li Y, Wang W, Du X, Song W, Zhang W, Lin L, Yuan Z. 2015. Hepatitis B virus polymerase disrupts K63-linked ubiquitination of STING to block innate cytosolic DNAsensing pathways. J Virol, 89: 2287–2300.
PubMed
Article
CAS
Google Scholar
Luangsay S, Gruffaz M, Isorce N, Testoni B, Michelet M, Faure-Dupuy S, Maadadi S, Ait-Goughoulte M, Parent R, Rivoire M, Javanbakht H, Lucifora J, Durantel D. 2015. Zoulim F Early inhibition of hepatocyte innate responses by hepatitis B virus. J Hepatol, 63: 1314–1322.
CAS
PubMed
Article
Google Scholar
Lucifora J, Protzer U. 2016. Attacking hepatitis B virus cccDNA- The holy grail to hepatitis B cure. J Hepatol, 64: S41–S48.
CAS
PubMed
Article
Google Scholar
Lucifora J, Xia Y, Reisinger F, Zhang K, Stadler D, Cheng X, Sprinzl MF, Koppensteiner H, Makowska Z, Volz T, Remouchamps C, Chou WM, Thasler WE, Hüser N, Durantel D, Liang TJ, Münk C, Heim MH, Browning JL, Dejardin E, Dandri M, Schindler M, Heikenwalder M, Protzer U. 2014. Specific and Nonhepatotoxic Degradation of Nuclear Hepatitis B Virus cccDNA. Science, 343: 1221–1228.
CAS
PubMed
PubMed Central
Article
Google Scholar
Luo X, Huang Y, Chen Y, Tu Z, Hu J, Tavis JE, Huang A, Hu Y. 2016. Association of Hepatitis B Virus Covalently Closed Circular DNA and Human APOBEC3B in Hepatitis B Virus-Related Hepatocellular Carcinoma. PLoS One, 11: e0157708.
PubMed
PubMed Central
Article
CAS
Google Scholar
Murphy CM, Xu Y, Li F, Nio K, Reszka-Blanco N, Li X, Wu Y, Yu Y, Xiong Y, Su L. 2016. Hepatitis B Virus X protein promotes degradation of SMC5/6 to enhance HBV replication. Cell Rep, 16: 2846–2854.
CAS
PubMed
PubMed Central
Article
Google Scholar
Nassal M. 2015. HBV cccDNA: viral persistence reservoir and key obstacle for a cure of chronic hepatitis B. Gut, 64: 1972–1984.
CAS
PubMed
Article
Google Scholar
Ni Y, Lempp FA, Mehrle S, Nkongolo S, Kaufman C, Fälth M, Stindt J, Königer C, Nassal M, Kubitz R, Sültmann H, Urban S. 2014. Hepatitis B and D viruses exploit sodium taurocholate cotransporting polypeptide for species-specific entry into hepatocytes. Gastroenterology, 146: 1070–1083.
CAS
PubMed
Article
Google Scholar
Niu C, Livingston CM, Li L, Beran RK, Daffis S, Ramakrishnan D, Burdette D, Peiser L, Salas E, Ramos H, Yu M, Cheng G, Strubin M, Delaney Iv WE, Fletcher SP. 2017. The Smc5/6 Complex Restricts HBV when Localized to ND10 without Inducing an Innate Immune Response and Is Counteracted by the HBV X Protein Shortly after Infection. PLoS One, 12: e0169648.
PubMed
PubMed Central
Article
CAS
Google Scholar
Ogi T, Lehmann AR. 2006. The Y-family DNA polymerase kappa (pol kappa) functions in mammalian nucleotide-excision repair. Nat Cell Biol, 8: 640–642.
CAS
PubMed
Article
Google Scholar
Ogi T, Limsirichaikul S, Overmeer RM, Volker M, Takenaka K, Cloney R, Nakazawa Y, Niimi A, Miki Y, Jaspers NG, Mullenders LH, Yamashita S, Fousteri MI, Lehmann AR. 2010. Three DNA polymerases, recruited by different mechanisms, carry out NER repair synthesis in human cells. Mol Cell, 37: 714–727.
CAS
PubMed
Article
Google Scholar
Palumbo GA, Scisciani C, Pediconi N, Lupacchini L, Alfalate D, Guerrieri F, Calvo L, Salerno D, Di Cocco S, Levrero M, Belloni L. 2015. IL6 inhibits HBV transcription by targeting the epigenetic control of the nuclear cccDNA minichromosome. PLoS One, 10: e0142599.
PubMed
PubMed Central
Article
CAS
Google Scholar
Pommier Y, Huang SY, Gao R, Das BB, Murai J, Marchand C. 2014. Tyrosyl-DNA-phosphodiesterases (TDP1 and TDP2). DNA Repair (Amst), 19: 114–129.
CAS
Article
Google Scholar
Qi Y, Gao Z, Xu G, Peng B, Liu C, Yan H, Yao Q, Sun G, Liu Y, Tang D, Song Z, He W, Sun Y, Guo JT, Li W. 2016. DNA Polymerase ? Is a Key Cellular Factor for the Formation of Covalently Closed Circular DNA of Hepatitis B Virus. PLoS Pathog, 12: e1005893.
PubMed
PubMed Central
Article
CAS
Google Scholar
Qi Z, Li G, Hu H, Yang C, Zhang X, Leng Q, Xie Y, Yu D, Zhang X, Gao Y, Lan K, Deng Q. 2014. Recombinant covalently closed circular hepatitis B virus DNA induces prolonged viral Persistence in Immunocompetent Mice. J Virol, 88: 8045–8056.
PubMed
PubMed Central
Article
CAS
Google Scholar
Ramanan V, Shlomai A, Cox DB, Schwartz RE, Michailidis E, Bhatta A, Scott DA, Zhang F, Rice CM, Bhatia SN. 2015. CRISPR/Cas9 cleavage of viral DNA efficiently suppresses hepatitis B virus. Sci Rep, 5: 10833.
CAS
PubMed
PubMed Central
Article
Google Scholar
Revill P, Locarnini S. 2016. Antiviral strategies to eliminate hepatitis B virus covalently closed circular DNA (cccDNA). Curr Opin Pharmacol, 30: 144–150.
CAS
PubMed
Article
Google Scholar
Rivière L, Gerossier L, Ducroux A, Dion S, Deng Q, Michel ML, Buendia MA, Hantz O, Neuveut C. 2015. HBX relieves chromatin- mediated transcriptional repression of hepatitis B viral cccDNA involving SETDB1 histone methyltransferase. J Hepatol, 63: 1093–1102.
PubMed
Article
CAS
Google Scholar
Schubeler D. 2015. Function and information content of DNA methylation. Nature, 517: 321–326.
CAS
PubMed
Article
Google Scholar
Schreiner S, Nassal M. 2017. A Role for the Host DNA Damage Response in Hepatitis B Virus cccDNA Formation—and Beyond?. Viruses, 9: 125.
PubMed Central
Article
CAS
Google Scholar
Schwartz RE, Fleming HE, Khetani SR, Bhatia SN. 2014. Pluripotent stem cell-derived hepatocyte-like cells. Biotechnol Adv, 32: 504–513.
CAS
PubMed
PubMed Central
Article
Google Scholar
Seeger C, Sohn JA. 2016. Complete Spectrum of CRISPR/Cas9- induced Mutations on HBV cccDNA. Mol Ther, 24: 1258–1266.
CAS
PubMed
PubMed Central
Article
Google Scholar
Seeger C, Sohn JA. 2014. Targeting hepatitis B virus cccDNA using CRISPR/Cas9. Mol Ther Nucl Acids, 3: e216.
CAS
Article
Google Scholar
Shimura S, Watashi K, Fukano K, Peel M, Sluder A, Kawai F, Iwamoto M, Tsukuda S, Takeuchi JS, Miyake T, Sugiyama M, Ogasawara Y, Park SY, Tanaka Y, Kusuhara H, Mizokami M, Sureau C, Wakita T. 2017. Cyclosporin derivatives inhibit hepatitis B virus entry without interfering with NTCP transporter activity. J Hepatol, 66: 685–692.
CAS
PubMed
Article
Google Scholar
Si-Tayeb K, Noto FK, Nagaoka M, Li J, Battle MA, Duris C, North PE, Dalton S, Duncan SA. 2010. Highly efficient generation of human hepatocyte-like cells from induced pluripotent stem cells. Hepatology, 51: 297–305.
CAS
PubMed
Article
Google Scholar
Takahashi K, Yamanaka S. 2006. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 126: 663–676.
CAS
PubMed
Article
Google Scholar
Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S. 2007. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell, 131: 861–872.
CAS
PubMed
Article
Google Scholar
Touboul T, Hannan NR, Corbineau S, Martinez A, Martinet C, Branchereau S, Mainot S, Strick-Marchand H, Pedersen R, Di Santo J, Weber A, Vallier L. 2010. Generation of functional hepatocytes from human embryonic stem cells under chemically defined conditions that recapitulate liver development. Hepatology, 51: 1754–1765.
CAS
PubMed
Article
Google Scholar
Vivekanandan P, Daniel HDJ, Kannangai R, Martinez-Murillo F, Torbenson M. 2010. Hepatitis B virus replication induces methylation of both host and viral DNA. J. Virol, 84: 4321–4329.
CAS
PubMed
PubMed Central
Article
Google Scholar
Wieland SF. 2015. The chimpanzee model for hepatitis B virus infection. Cold Spring Harb Perspect Med, 5. pii: a021469.
PubMed
PubMed Central
Article
CAS
Google Scholar
Wood RD., Mitchell M., Sgouros J., Lindahl T 2001. Human DNA repair genes. Science, 291: 1284–1289.
CAS
PubMed
Article
Google Scholar
Yan H, Zhong G, Xu G, He W, Jing Z, Gao Z, Huang Y, Qi Y, Peng B, Wang H, Fu L, Song M, Chen P, Gao W, Ren B, Sun Y, Cai T, Feng X, Sui J, Li W. 2012. Sodium taurocholate cotransporting polypeptide is a functional receptor for human hepatitis B and D virus. Elife, 1: e00049.
PubMed
PubMed Central
Article
CAS
Google Scholar
Yan Z, Zeng J, Yu Y, Xiang K, Hu H, Zhou X, Gu L, Wang L, Zhao J, Young JA, Gao L. 2017. HBV circle: A novel tool to investigate hepatitis B virus covalently closed circular DNA. J Hepatol, pii: S0168-8278(17)30072-7.
Yang D, Zuo C, Wang X, Meng X, Xue B, Liu N, Yu R, Qin Y, Gao Y, Wang Q, Hu J, Wang L, Zhou Z, Liu B, Tan D, Guan Y, Zhu H. 2014. Complete replication of hepatitis B virus and hepatitis C virus in a newly developed hepatoma cell line. Proc Natl Acad Sci USA, 111: E1264–E1273.
CAS
PubMed
PubMed Central
Google Scholar
Yang L, Lu M. 2017. Small molecule inhibitors of hepatitis B virus nucleocapsid assembly: a new approach to treat chronic HBV infection. Curr Med Chem, doi: 10.2174/09298673246661 70704121800.
Google Scholar
Zhen S, Hua L, Liu YH, Gao LC, Fu J, Wan DY, Dong LH, Song HF, Gao X. 2015. Harnessing the clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated Cas9 system to disrupt the hepatitis B virus. Gene Ther, 22: 404–412.
CAS
PubMed
Article
Google Scholar
Zoulim F, Locarnini S. 2009. Hepatitis B virus resistance to nucleos(t)ide analogues. Gastroenterology, 137: 1593–1608.e1-2.
CAS
PubMed
Article
Google Scholar