Virologica Sinica

, Volume 32, Issue 4, pp 261–270 | Cite as

Influenza A virus-induced downregulation of miR-26a contributes to reduced IFNα/β production

Research Article

Abstract

Innate immunity provides immediate defense against viral infection. Influenza A virus (IAV) is able to get past the first line of defense. Elucidation of the molecular interaction between influenza factors and the newly recognized host players in the innate response might help in our understanding of the root causes of virulence and pathogenicity of IAV. In this study, we show that expression of miR-26a leads to a significant inhibition of IAV replication. miR-26a does not directly target IAV genome. Instead, miR-26a activates the type I interferon (IFN) signaling pathway and promotes the production of IFN-stimulated genes, thus suppressing viral replication. Furthermore, ubiquitin-specific protease 3 (USP3), a negative regulator of type I IFN pathway, is targeted by miR-26a upon IAV challenge. However, miR-26a is significantly downregulated during IAV infection. Thus, downregulation of miR-26a is a new strategy evolved by IAV to counteract cellular antiviral responses. Our findings indicate that delivery of miR-26a may be a potential strategy for anti-IAV therapies.

Keywords

Influenza A virus (IAV) innate immune response miR-26a USP3 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12250_2017_4004_MOESM1_ESM.pdf (270 kb)
Influenza A virus-induced downregulation of miR-26a contributes to reduced IFNα/β production

References

  1. Baltimore D, Boldin MP, O’Connell RM, Rao DS, Taganov KD. 2008. MicroRNAs: new regulators of immune cell development and function. Nat Immunol, 9: 839–845.CrossRefPubMedGoogle Scholar
  2. Chen J, Zhang K, Xu Y, Gao Y, Li C, Wang R, Chen L. 2016. The role of microRNA-26a in human cancer progression and clinical application. Tumour Biol, 37: 7095–7108.CrossRefPubMedGoogle Scholar
  3. Cui J, Song Y, Li Y, Zhu Q, Tan P, Qin Y, Wang HY, Wang RF. 2014. USP3 inhibits type I interferon signaling by deubiquitinating RIG-I-like receptors. Cell Res, 24: 400–416.CrossRefPubMedGoogle Scholar
  4. Everett RD, Boutell C, Hale BG. 2013. Interplay between viruses and host sumoylation pathways. Nat Rev Microbiol, 11: 400–411.CrossRefPubMedGoogle Scholar
  5. Feng W, Sun X, Shi N, Zhang M, Guan Z, Duan M. 2017. Influenza a virus NS1 protein induced A20 contributes to viral replication by suppressing interferon-induced antiviral response. Biochem Biophys Res Commun, 482: 1107–1113.CrossRefPubMedGoogle Scholar
  6. Flory E, Kunz M, Scheller C, Jassoy C, Stauber R, Rapp UR, Ludwig S. 2000. Influenza virus-induced NF-kappaB-dependent gene expression is mediated by overexpression of viral proteins and involves oxidative radicals and activation of IkappaB kinase. J Biol Chem, 275: 8307–8314.CrossRefPubMedGoogle Scholar
  7. Friedman CS, O’Donnell MA, Legarda-Addison D, Ng A, Cardenas WB, Yount JS, Moran TM, Basler CF, Komuro A, Horvath CM, Xavier R, Ting AT. 2008. The tumour suppressor CYLD is a negative regulator of RIG-I-mediated antiviral response. EMBO Rep, 9: 930–936.CrossRefPubMedPubMedCentralGoogle Scholar
  8. Gack MU, Albrecht RA, Urano T, Inn KS, Huang IC, Carnero E, Farzan M, Inoue S, Jung JU, Garcia-Sastre A. 2009. Influenza A virus NS1 targets the ubiquitin ligase TRIM25 to evade recognition by the host viral RNA sensor RIG-I. Cell Host Microbe, 5: 439–449.CrossRefPubMedPubMedCentralGoogle Scholar
  9. Gack MU, Shin YC, Joo CH, Urano T, Liang C, Sun L, Takeuchi O, Akira S, Chen Z, Inoue S, Jung JU. 2007. TRIM25 RINGfinger E3 ubiquitin ligase is essential for RIG-I-mediated antiviral activity. Nature, 446: 916–920.CrossRefPubMedGoogle Scholar
  10. Gao S, Song L, Li J, Zhang Z, Peng H, Jiang W, Wang Q, Kang T, Chen S, Huang W. 2012. Influenza A virus-encoded NS1 virulence factor protein inhibits innate immune response by targeting IKK. Cell Microbiol, 14: 1849–1866.CrossRefPubMedGoogle Scholar
  11. Gao S, Wu J, Liu RY, Li J, Song L, Teng Y, Sheng C, Liu D, Yao C, Chen H, Jiang W, Chen S, Huang W. 2015. Interaction of NS2 with AIMP2 facilitates the switch from ubiquitination to SUMOylation of M1 in influenza A virus-infected cells. J Virol, 89: 300–311.CrossRefPubMedGoogle Scholar
  12. Gui S, Chen X, Zhang M, Zhao F, Wan Y, Wang L, Xu G, Zhou L, Yue X, Zhu Y, Liu S. 2015. Mir-302c mediates influenza A virus-induced IFNbeta expression by targeting NF-kappaB inducing kinase. FEBS Lett, 589: 4112–4118.CrossRefPubMedGoogle Scholar
  13. Huang X, Zheng M, Wang P, Mok BW, Liu S, Lau SY, Chen P, Liu YC, Liu H, Chen Y, Song W, Yuen KY, Chen H. 2017. An NS-segment exonic splicing enhancer regulates influenza A virus replication in mammalian cells. Nat Commun, 8: 14751.CrossRefPubMedPubMedCentralGoogle Scholar
  14. Ingle H, Kumar S, Raut AA, Mishra A, Kulkarni DD, Kameyama T, Takaoka A, Akira S, Kumar H. 2015. The microRNA miR-485 targets host and influenza virus transcripts to regulate antiviral immunity and restrict viral replication. Sci Signal, 8: ra126.CrossRefGoogle Scholar
  15. Jia X, Bi Y, Li J, Xie Q, Yang H, Liu W. 2015. Cellular microRNA miR-26a suppresses replication of porcine reproductive and respiratory syndrome virus by activating innate antiviral immunity. Sci Rep, 5: 10651.CrossRefPubMedPubMedCentralGoogle Scholar
  16. Lee Y, Song B, Park C, Kwon KS. 2013. TRIM11 negatively regulates IFNbeta production and antiviral activity by targeting TBK1. PLoS One, 8: e63255.CrossRefPubMedPubMedCentralGoogle Scholar
  17. Li L, Wei Z, Zhou Y, Gao F, Jiang Y, Yu L, Zheng H, Tong W, Yang S, Zheng H, Shan T, Liu F, Xia T, Tong G. 2015. Host miR-26a suppresses replication of porcine reproductive and respiratory syndrome virus by upregulating type I interferons. Virus Res, 195: 86–94.CrossRefPubMedGoogle Scholar
  18. Neumann G, Watanabe T, Ito H, Watanabe S, Goto H, Gao P, Hughes M, Perez DR, Donis R, Hoffmann E, Hobom G, Kawaoka Y. 1999. Generation of influenza A viruses entirely from cloned cDNAs. Proc Natl Acad Sci U S A, 96: 9345–9350.CrossRefPubMedPubMedCentralGoogle Scholar
  19. O’Connell RM, Rao DS, Chaudhuri AA, Baltimore D. 2010. Physiological and pathological roles for microRNAs in the immune system. Nat Rev Immunol, 10: 111–122.CrossRefPubMedGoogle Scholar
  20. Pauli EK, Schmolke M, Wolff T, Viemann D, Roth J, Bode JG, Ludwig S. 2008. Influenza A virus inhibits type I IFN signaling via NF-kappaB-dependent induction of SOCS-3 expression. PLoS Pathog, 4: e1000196.CrossRefPubMedPubMedCentralGoogle Scholar
  21. Song L, Liu H, Gao S, Jiang W, Huang W. 2010. Cellular micro RNAs inhibit replication of the H1N1 influenza A virus in infected cells. J Virol, 84: 8849–8860.CrossRefPubMedPubMedCentralGoogle Scholar
  22. Tambyah PA, Sepramaniam S, Mohamed Ali J, Chai SC, Swaminathan P, Armugam A, Jeyaseelan K. 2013. microRNAs in circulation are altered in response to influenza A virus infection in humans. PLoS One, 8: e76811.CrossRefPubMedPubMedCentralGoogle Scholar
  23. Wei C, Kim IK, Kumar S, Jayasinghe S, Hong N, Castoldi G, Catalucci D, Jones WK, Gupta S. 2013. NF-kappaB mediated miR-26a regulation in cardiac fibrosis. J Cell Physiol, 228: 1433–1442.CrossRefPubMedGoogle Scholar
  24. Zhou R, O’Hara SP, Chen XM. 2011. MicroRNA regulation of innate immune responses in epithelial cells. Cell Mol Immunol, 8: 371–379.CrossRefPubMedPubMedCentralGoogle Scholar
  25. Zhu Y, Qi X, Cui L, Zhou M, Wang H. 2013. Human co-infection with novel avian influenza A H7N9 and influenza A H3N2 viruses in Jiangsu province, China. Lancet, 381: 2134.CrossRefPubMedGoogle Scholar

Copyright information

© Wuhan Institute of Virology, CAS and Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  1. 1.The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Collaborative Innovation Center for Cardiovascular Disorders, Beijing Institute of Heart, Lung & Blood Vessel DiseasesBeijing Anzhen Hospital, Capital Medical UniversityBeijingChina
  2. 2.CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of MicrobiologyChinese Academy of SciencesBeijingChina
  3. 3.Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer MedicineGuangzhouChina
  4. 4.Beijing Municipal Center for Food Safety Monitoring and Risk AssessmentBeijingChina

Personalised recommendations