Productive HBV infection of well-differentiated, hNTCP-expressing human hepatoma-derived (Huh7) cells

  • Ming Zhou
  • Kaitao Zhao
  • Yongxuan Yao
  • Yifei Yuan
  • Rongjuan Pei
  • Yun Wang
  • Jizheng Chen
  • Xue Hu
  • Yuan Zhou
  • Xinwen Chen
  • Chunchen Wu
Open Access
Research Article

Abstract

Feasible and effective cell models for hepatitis B virus (HBV) infection are required for investigating the complete lifecycle of this virus, including the early steps of viral entry. Resistance to dimethyl sulfoxide/polyethylene glycol (DMSO/PEG), hNTCP expression, and a differentiated state are the limiting factors for successful HBV infection models. In the present study, we used a hepatoma cell line (Huh7DhNTCP) to overcome these limiting factors so that it exhibits excellent susceptibility to HBV infection. To achieve this goal, different hepatoma cell lines were tested with 2.5% DMSO / 4% PEG8000, and one resistant cell line (Huh7D) was used to construct a stable hNTCP-expressing cell line (Huh7DhNTCP) using a recombinant lentivirus system. Then, the morphological characteristics and differentiation molecular markers of Huh7DhNTCP cells with or without DMSO treatment were characterized. Finally, the susceptibility of Huh7DhNTCP cells to HBV infection was assessed. Our results showed that Huh7D cells were resistant to 2.5% DMSO / 4% PEG8000, whereas the others were not. Huh7DhNTCP cells were established to express a high level of hNTCP compared to liver extracts, and Huh7DhNTCP cells rapidly transformed into a non-dividing, well-differentiated polarized phenotype under DMSO treatment. Huh7DhNTCP cells fully supported the entire lifecycle of HBV infection. This cell culture system will be useful for the analysis of host-virus interactions, which should facilitate the discovery of antiviral drugs and vaccines.

Keywords

Hepatitis B virus (HBV) Na+/taurocholate cotransporting polypeptide (NTCP) Huh7 dimethyl sulfoxide (DMSO) polyethylene glycol (PEG) susceptibility 

Supplementary material

12250_2017_3983_MOESM1_ESM.pdf (4.1 mb)
Supplementary material, approximately 6286 KB.

References

  1. Cao H, Zhu W, Han Q, Pei R, Chen X. 2014. Construction of a chimeric hepatitis C virus replicon based on a strain isolated from a chronic hepatitis C patient. Virol Sin, 29: 61–70.CrossRefPubMedGoogle Scholar
  2. Cao L, Wu C, Shi H, Gong Z, Zhang E, Wang H, Zhao K, Liu S, Li S, Gao X, Wang Y, Pei R, Lu M, Chen X. 2014. Coexistence of hepatitis B virus quasispecies enhances viral replication and the ability to induce host antibody and cellular immune responses. J Virol, 88: 8656–8666.CrossRefPubMedPubMedCentralGoogle Scholar
  3. Gripon P, Diot C, Guguen-Guillouzo C. 1993. Reproducible high level infection of cultured adult human hepatocytes by hepatitis B virus: effect of polyethylene glycol on adsorption and penetration. Virology, 192: 534–540.CrossRefPubMedGoogle Scholar
  4. Gripon P, Diot C, Theze N, Fourel I, Loreal O, Brechot C, Guguen-Guillouzo C. 1988. Hepatitis B virus infection of adult human hepatocytes cultured in the presence of dimethyl sulfoxide. J Virol, 62: 4136–4143.PubMedPubMedCentralGoogle Scholar
  5. Gripon P, Rumin S, Urban S, Le Seyec J, Glaise D, Cannie I, Guyomard C, Lucas J, Trepo C, Guguen-Guillouzo C. 2002. Infection of a human hepatoma cell line by hepatitis B virus. Proc Natl Acad Sci U S A, 99: 15655–15660.CrossRefPubMedPubMedCentralGoogle Scholar
  6. Han Q, Xu C, Wu C, Zhu W, Yang R, Chen X. 2009. Compensatory mutations in NS3 and NS5A proteins enhance the virus production capability of hepatitis C reporter virus. Virus Res, 145: 63–73.CrossRefPubMedGoogle Scholar
  7. Hirt B. 1967. Selective extraction of polyoma DNA from infected mouse cell cultures. J Mol Biol, 26: 365–369.CrossRefPubMedGoogle Scholar
  8. Kawai HF, Kaneko S, Honda M, Shirota Y, Kobayashi K. 2001. alpha-fetoprotein-producing hepatoma cell lines share common expression profiles of genes in various categories demonstrated by cDNA microarray analysis. Hepatology, 33: 676–691.CrossRefPubMedGoogle Scholar
  9. Kock J, Nassal M, MacNelly S, Baumert TF, Blum HE, von Weizsacker F. 2001. Efficient infection of primary tupaia hepatocytes with purified human and woolly monkey hepatitis B virus. J Virol, 75: 5084–5089.CrossRefPubMedPubMedCentralGoogle Scholar
  10. Lempp FA, Wiedtke E, Qu B, Roques P, Chemin I, Vondran FW, Le Grand R, Grimm D, Urban S. 2017. Sodium taurocholate cotransporting polypeptide is the limiting host factor of Hepatitis B Virus infection in macaque and pig hepatocytes. Hepatology. doi: 10.1002/hep.29112.Google Scholar
  11. Mee CJ, Harris HJ, Farquhar MJ, Wilson G, Reynolds G, Davis C, van ISC, Balfe P, McKeating JA. 2009. Polarization restricts hepatitis C virus entry into HepG2 hepatoma cells. J Virol, 83: 6211–6221.CrossRefPubMedPubMedCentralGoogle Scholar
  12. Nakabayashi H, Taketa K, Miyano K, Yamane T, Sato J. 1982. Growth of human hepatoma cells lines with differentiated functions in chemically defined medium. Cancer Res, 42: 3858–3863.PubMedGoogle Scholar
  13. Ni Y, Lempp FA, Mehrle S, Nkongolo S, Kaufman C, Falth M, Stindt J, Koniger C, Nassal M, Kubitz R, Sultmann H, Urban S. 2014. Hepatitis B and D viruses exploit sodium taurocholate cotransporting polypeptide for species-specific entry into hepatocytes. Gastroenterology, 146: 1070–1083.CrossRefPubMedGoogle Scholar
  14. Ni Y, Urban S. 2017. Hepatitis B Virus Infection of HepaRG Cells, HepaRG-hNTCP Cells, and Primary Human Hepatocytes. Methods Mol Biol, 1540: 15–25.CrossRefPubMedGoogle Scholar
  15. Pei R, Qin B, Zhang X, Zhu W, Kemper T, Ma Z, Trippler M, Schlaak J, Chen X, Lu M. 2014. Interferon-induced proteins with tetratricopeptide repeats 1 and 2 are cellular factors that limit hepatitis B virus replication. J Innate Immun, 6: 182–191.CrossRefPubMedGoogle Scholar
  16. Ren S, Nassal M. 2001. Hepatitis B virus (HBV) virion and covalently closed circular DNA formation in primary tupaia hepatocytes and human hepatoma cell lines upon HBV genome transduction with replication-defective adenovirus vectors. J Virol, 75: 1104–1116.CrossRefPubMedPubMedCentralGoogle Scholar
  17. Sainz B, Jr., Chisari FV 2006. Production of infectious hepatitis C virus by well-differentiated, growth-arrested human hepatomaderived cells. J Virol, 80: 10253–10257.CrossRefPubMedPubMedCentralGoogle Scholar
  18. Schaefer S. 2007. Hepatitis B virus taxonomy and hepatitis B virus genotypes. World J Gastroenterol, 13: 14–21.CrossRefPubMedPubMedCentralGoogle Scholar
  19. Schulze-Bergkamen H, Untergasser A, Dax A, Vogel H, Buchler P, Klar E, Lehnert T, Friess H, Buchler MW, Kirschfink M, Stremmel W, Krammer PH, Muller M, Protzer U. 2003. Primary human hepatocytes—a valuable tool for investigation of apoptosis and hepatitis B virus infection. J Hepatol, 38: 736–744.CrossRefPubMedGoogle Scholar
  20. Schulze A, Mills K, Weiss TS, Urban S. 2012. Hepatocyte polarization is essential for the productive entry of the hepatitis B virus. Hepatology, 55: 373–383.CrossRefPubMedGoogle Scholar
  21. Schulze A, Schieck A, Ni Y, Mier W, Urban S. 2010. Fine mapping of pre-S sequence requirements for hepatitis B virus large envelope protein-mediated receptor interaction. J Virol, 84: 1989–2000.CrossRefPubMedGoogle Scholar
  22. Shimura S, Watashi K, Fukano K, Peel M, Sluder A, Kawai F, Iwamoto M, Tsukuda S, Takeuchi JS, Miyake T, Sugiyama M, Ogasawara Y, Park SY, Tanaka Y, Kusuhara H, Mizokami M, Sureau C, Wakita T. 2017. Cyclosporin derivatives inhibit hepatitis B virus entry without interfering with NTCP transporter activity. J Hepatol, 66: 685–692.CrossRefPubMedGoogle Scholar
  23. Sumida K, Igarashi Y, Toritsuka N, Matsushita T, Abe-Tomizawa K, Aoki M, Urushidani T, Yamada H, Ohno Y. 2011. Effects of DMSO on gene expression in human and rat hepatocytes. Hum Exp Toxicol, 30: 1701–1709.CrossRefPubMedGoogle Scholar
  24. Tian Y, James Ou J. Genetic and epigenetic alterations in hepatitis B virus-associated hepatocellular carcinoma. Virol Sin(30): 85–91.Google Scholar
  25. Wang W, Peng H, Li J, Zhao X, Zhao F, Hu K. 2013. Controllable inhibition of hepatitis B virus replication by a DR1-targeting short hairpin RNA (shRNA) expressed from a DOX-inducible lentiviral vector. Virus Genes, 46: 393–403.CrossRefPubMedGoogle Scholar
  26. Weizsäcker Fv, Roggendorf M. 2005. Models of viral hepatitis. Basel: Karger.CrossRefGoogle Scholar
  27. Wiznerowicz M, Trono D. 2003. Conditional suppression of cellular genes: lentivirus vector-mediated drug-inducible RNA interference. J Virol, 77: 8957–8961.CrossRefPubMedPubMedCentralGoogle Scholar
  28. Wu C, Zhang X, Tian Y, Song J, Yang D, Roggendorf M, Lu M, Chen X. 2010. Biological significance of amino acid substitutions in hepatitis B surface antigen (HBsAg) for glycosylation, secretion, antigenicity and immunogenicity of HBsAg and hepatitis B virus replication. J Gen Virol, 91: 483–492.CrossRefPubMedGoogle Scholar
  29. Yan H, Zhong G, Xu G, He W, Jing Z, Gao Z, Huang Y, Qi Y, Peng B, Wang H, Fu L, Song M, Chen P, Gao W, Ren B, Sun Y, Cai T, Feng X, Sui J, Li W. 2012. Sodium taurocholate cotransporting polypeptide is a functional receptor for human hepatitis B and D virus. Elife, 1: e00049.CrossRefPubMedPubMedCentralGoogle Scholar
  30. Zhou M, Huang Y, Cheng Z, Zhao F, Li J, Zhi X, Tian X, Sun W, Hu K. 2014a. Revival, characterization, and hepatitis B virus infection of cryopreserved human fetal hepatocytes. J Virol Methods, 207: 29–37.CrossRefPubMedGoogle Scholar
  31. Zhou M, Zhao F, Li J, Cheng Z, Tian X, Zhi X, Huang Y, Hu K. 2014b. Long-term maintenance of human fetal hepatocytes and prolonged susceptibility to HBV infection by co-culture with non-parenchymal cells. J Virol Methods, 195: 185–193.CrossRefPubMedGoogle Scholar

Copyright information

© The Author(s) 2017

OPEN ACCESS This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.State Key Laboratory of Virology, Wuhan Institute of VirologyChinese Academy of SciencesWuhanChina
  2. 2.Shenzhen Xenotransplantation Research and Development Center, State and Local Joint Cancer Genome Clinical Application of Key Technology Laboratory, Shenzhen Second People’s HospitalFirst Affiliated Hospital of Shenzhen UniversityShenzhenChina
  3. 3.Institute of Immunology, Zhongshan School of Medicine, Guangdong Provincial Key Laboratory of Organ Donation and Transplant ImmunologySun Yat-sen UniversityGuangzhouChina

Personalised recommendations