Virologica Sinica

, Volume 32, Issue 3, pp 199–206

Development of a reverse transcription quantitative polymerase chain reaction-based assay for broad coverage detection of African and Asian Zika virus lineages

Research Article

Abstract

The Zika virus (ZIKV) is an arbovirus that has spread rapidly worldwide within recent times. There is accumulating evidence that associates ZIKV infections with Guillain-Barré Syndrome (GBS) and microcephaly in humans. The ZIKV is genetically diverse and can be separated into Asian and African lineages. A rapid, sensitive, and specific assay is needed for the detection of ZIKV across various pandemic regions. So far, the available primers and probes do not cover the genetic diversity and geographic distribution of all ZIKV strains. To this end, we have developed a one-step quantitative reverse transcription polymerase chain reaction (qRT-PCR) assay based on conserved sequences in the ZIKV envelope (E) gene. The detection limit of the assay was determined to be five RNA transcript copies and 2.94 × 10–3 50% tissue culture infectious doses (TCID50) of live ZIKV per reaction. The assay was highly specific and able to detect five different ZIKV strains covering the Asian and African lineages without nonspecific amplification, when tested against other flaviviruses. The assay was also successful in testing for ZIKV in clinical samples. Our assay represents an improvement over the current methods available for the detection ZIKV and would be valuable as a diagnostic tool in various pandemic regions.

Keywords

Flavivirus Zika virus(ZIKV) molecular diagnostics qRT-PCR 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aubry M, Richard V, Green J, Broult J, Musso D. 2016. Inactivation of Zika virus in plasma with amotosalen and ultraviolet A illumination. Transfusion, 56: 33–40.CrossRefPubMedGoogle Scholar
  2. Basarab M, Bowman C, Aarons EJ, Cropley I. 2016. Zika virus. BMJ, 352: i1049.CrossRefPubMedGoogle Scholar
  3. Besnard M, Lastere S, Teissier A, Cao-Lormeau V, Musso D. 2014. Evidence of perinatal transmission of Zika virus, French Polynesia, December 2013 and February 2014. Euro Surveill, 19. pii: 20751.CrossRefPubMedGoogle Scholar
  4. Deng C, Liu S, Zhang Q, Xu M, Zhang H, Gu D, Shi L, He J, Xiao G, Zhang B. 2016a. Isolation and characterization of Zika virus imported to China using C6/36 mosquito cells. Virol Sin, 31: 176–179.CrossRefPubMedGoogle Scholar
  5. Deng YQ, Zhao H, Li XF, Zhang NN, Liu ZY, Jiang T, Gu DY, Shi L, He JA, Wang HJ, Sun ZZ, Ye Q, Xie DY, Cao WC, Qin CF. 2016b. Isolation, identification and genomic characterization of the Asian lineage Zika virus imported to China. Sci China Life Sci, 59: 428–430.CrossRefPubMedGoogle Scholar
  6. Dick GW, Kitchen SF, Haddow AJ. 1952. Zika virus. I. Isolations and serological specificity. Trans R Soc Trop Med Hyg, 46: 509–520.CrossRefPubMedGoogle Scholar
  7. Duffy MR, Chen TH, Hancock WT, Powers AM, Kool JL, Lanciotti RS, Pretrick M, Marfel M, Holzbauer S, Dubray C, Guillaumot L, Griggs A, Bel M, Lambert AJ, Laven J, Kosoy O, Panella A, Biggerstaff BJ, Fischer M, Hayes EB. 2009. Zika virus outbreak on Yap Island, Federated States of Micronesia. N Engl J Med, 360: 2536–2543.CrossRefPubMedGoogle Scholar
  8. Faria NR, Azevedo Rdo S, Kraemer MU, Souza R, Cunha MS, Hill SC, Theze J, Bonsall MB, Bowden TA, Rissanen I, et al. 2016. Zika virus in the Americas: Early epidemiological and genetic findings. Science, 352: 345–349.CrossRefPubMedPubMedCentralGoogle Scholar
  9. Faye O, Faye O, Diallo D, Diallo M, Weidmann M, Sall AA. 2013. Quantitative real-time PCR detection of Zika virus and evaluation with field-caught mosquitoes. Virol J, 10: 311.CrossRefPubMedPubMedCentralGoogle Scholar
  10. Faye O, Freire CC, Iamarino A, Faye O, de Oliveira JV, Diallo M, Zanotto PM, Sall AA. 2014. Molecular evolution of Zika virus during its emergence in the 20(th) century. PLoS Negl Trop Dis, 8: e2636.CrossRefGoogle Scholar
  11. Gourinat AC, O’Connor O, Calvez E, Goarant C, Dupont-Rouzeyrol M. 2015. Detection of Zika virus in urine. Emerg Infect Dis, 21: 84–86.CrossRefPubMedPubMedCentralGoogle Scholar
  12. Govero J, Esakky P, Scheaffer SM, Fernandez E, Drury A, Platt DJ, Gorman MJ, Richner JM, Caine EA, Salazar V, Moley KH, Diamond MS. 2016. Zika virus infection damages the testes in mice. Nature, 540: 438–442.CrossRefPubMedGoogle Scholar
  13. Grard G, Moureau G, Charrel RN, Holmes EC, Gould EA, de Lamballerie X. 2010. Genomics and evolution of Aedes-borne flaviviruses. J Gen Virol, 91: 87–94.CrossRefPubMedGoogle Scholar
  14. Hamel R, Liegeois F, Wichit S, Pompon J, Diop F, Talignani L, Thomas F, Despres P, Yssel H, Misse D. 2016. Zika virus: epidemiology, clinical features and host-virus interactions. Microbes Infect, 18: 441–449.CrossRefPubMedGoogle Scholar
  15. Kuno G, Chang GJ. 2007. Full-length sequencing and genomic characterization of Bagaza, Kedougou, and Zika viruses. Arch Virol, 152: 687–696.CrossRefPubMedGoogle Scholar
  16. Lanciotti RS, Kosoy OL, Laven JJ, Velez JO, Lambert AJ, Johnson AJ, Stanfield SM, Duffy MR. 2008. Genetic and serologic properties of Zika virus associated with an epidemic, Yap State, Micronesia, 2007. Emerg Infect Dis, 14: 1232–1239.CrossRefPubMedPubMedCentralGoogle Scholar
  17. Liu L, Wu W, Zhao X, Xiong Y, Zhang S, Liu X, Qu J, Li J, Nei K, Liang M. 2016. Complete Genome Sequence of Zika Virus from the First Imported Case in Mainland China. Genome Announc, 4. pii: e00291–16.PubMedPubMedCentralGoogle Scholar
  18. Lucchese G, Kanduc D. 2016. Zika virus and autoimmunity: From microcephaly to Guillain-Barre syndrome, and beyond. Autoimmun Rev, 15: 801–808.CrossRefPubMedGoogle Scholar
  19. Ma W, Li S, Ma S, Jia L, Zhang F, Zhang Y, Zhang J, Wong G, Zhang S, Lu X, Liu M, Yan J, Li W, Qin C, Han D, Qin C, Wang N, Li X, Gao GF. 2016. Zika Virus Causes Testis Damage and Leads to Male Infertility in Mice. Cell, 167: 1511–1524.CrossRefPubMedGoogle Scholar
  20. Macnamara FN. 1954. Zika virus: a report on three cases of human infection during an epidemic of jaundice in Nigeria. Trans R Soc Trop Med Hyg, 48: 139–145.CrossRefPubMedGoogle Scholar
  21. Malkki H. 2016. CNS infections: Zika virus infection could trigger Guillain-Barre syndrome. Nat Rev Neurol, 12: 187.CrossRefPubMedGoogle Scholar
  22. Mlakar J, Korva M, Tul N, Popovic M, Poljsak-Prijatelj M, Mraz J, Kolenc M, Resman Rus K, Vesnaver Vipotnik T, Fabjan Vodusek V, Vizjak A, Pizem J, Petrovec M, Avsic Zupanc T. 2016. Zika Virus Associated with Microcephaly. N Engl J Med, 374: 951–958.CrossRefPubMedGoogle Scholar
  23. Musso D, Gubler DJ. 2016. Zika Virus. Clin Microbiol Rev, 29: 487–524.CrossRefPubMedGoogle Scholar
  24. Musso D, Roche C, Robin E, Nhan T, Teissier A, Cao-Lormeau VM. 2015. Potential sexual transmission of Zika virus. Emerg Infect Dis, 21: 359–361.CrossRefPubMedPubMedCentralGoogle Scholar
  25. Parra B, Lizarazo J, Jimenez-Arango JA, Zea-Vera AF, Gonzalez-Manrique G, Vargas J, Angarita JA, Zuniga G, Lopez-Gonzalez R, Beltran CL, et al. 2016. Guillain-Barre Syndrome Associated with Zika Virus Infection in Colombia. N Engl J Med, 375: 1513–1523.CrossRefPubMedGoogle Scholar
  26. Reed LJ, Muench H. 1938. A simple method of estimating fifty percent endpoints. Am J Hyg, 27: 493–497.Google Scholar
  27. Saiz JC, Vazquez-Calvo A, Blazquez AB, Merino-Ramos T, Escribano-Romero E, Martin-Acebes MA. 2016. Zika Virus: the Latest Newcomer. Front Microbiol, 7: 496.PubMedPubMedCentralGoogle Scholar
  28. Shi W, Zhang Z, Ling C, Carr MJ, Tong Y, Gao GF. 2016. Increasing genetic diversity of Zika virus in the Latin American outbreak. Emerg Microbes Infect, 5: e68.CrossRefGoogle Scholar
  29. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. 1997. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res, 25: 4876–4882.CrossRefPubMedPubMedCentralGoogle Scholar
  30. Waehre T, Maagard A, Tappe D, Cadar D, Schmidt-Chanasit J. 2014. Zika virus infection after travel to Tahiti, December 2013. Emerg Infect Dis, 20: 1412–1414.CrossRefPubMedPubMedCentralGoogle Scholar
  31. Wang L, Valderramos SG, Wu A, Ouyang S, Li C, Brasil P, Bonaldo M, Coates T, Nielsen-Saines K, Jiang T, Aliyari R, Cheng G. 2016a. From Mosquitos to Humans: Genetic Evolution of Zika Virus. Cell Host Microbe, 19: 561–565.CrossRefPubMedGoogle Scholar
  32. Wang Q, Yang Y, Zheng HX, Bi YH, Song JD, Li LQ, Gu DY, Wang PY, Li SH, Liu S, Zhao YZ, Liu L, Gao GF, Liu YX. 2016b. Genetic and biological characterization of Zika virus from human cases imported through Shenzhen Port. Chinese Science Bulletin, 61: 2463–2474.Google Scholar
  33. WHO 2016a, posting date. WHO statement on the first meeting of the International Health Regulations (2005) (IHR 2005) Emergency Committee on Zika virus and observed increase in neurological disorders and neonatal malformations. Available: http://www.who.int/mediacentre/news/statements/2016/1stemergency- committee-zika/en/. Accessed 18 October 2016.Google Scholar
  34. WHO 2016b, posting date. Zika virus and complications. Available: http://www.who.int/emergencies/zika-virus/en/. Accessed 18 October 2016.Google Scholar
  35. WHO 2017, posting date. Zika Situation Report. Available: http://www.who.int/emergencies/zika-virus/situation-report/05- january-2017/en/. Accessed 6 May 2017.Google Scholar
  36. Wolfe ND, Kilbourn AM, Karesh WB, Rahman HA, Bosi EJ, Cropp BC, Andau M, Spielman A, Gubler DJ. 2001. Sylvatic transmission of arboviruses among Bornean orangutans. Am J Trop Med Hyg, 64: 310–316.CrossRefPubMedGoogle Scholar
  37. Wong G, Li S, Liu L, Liu y, Bi Y. 2017. Zika virus in the testes: should we be worried?. Protein Cell, 8: 162–164.CrossRefPubMedPubMedCentralGoogle Scholar
  38. Zhang Y, Chen W, Wong G, Bi Y, Yan J, Sun Y, Chen E, Yan H, Lou X, Mao H, Xia S, Gao GF, Shi W, Chen Z. 2016. Highly diversified Zika viruses imported to China, 2016. Protein Cell, 7: 461–464.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Wuhan Institute of Virology, CAS and Springer Science+Business Media Singapore 2017

Authors and Affiliations

  1. 1.Shenzhen Key Laboratory of Pathogen and Immunity, State Key Discipline of Infectious DiseaseShenzhen Third People’s HospitalShenzhenChina
  2. 2.CAS Key Laboratory of Pathogenic Microbiology and Immunology, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, Institute of Microbiology, Center for Influenza Research and Early-warning (CASCIRE)Chinese Academy of SciencesBeijingChina
  3. 3.China-Japan Union Hospital of Jilin UniversityChangchunChina
  4. 4.Key Laboratory for Medical Virology, NHFPC, National Institute for Viral Disease Control and PreventionChina CDCBeijingChina
  5. 5.Office of Director-GeneralChinese Center for Disease Control and PreventionBeijingChina
  6. 6.Savaid Medical SchoolUniversity of Chinese Academy of SciencesBeijingChina

Personalised recommendations