Virologica Sinica

, Volume 32, Issue 2, pp 122–129 | Cite as

Avian influenza virus directly infects human natural killer cells and inhibits cell activity

Research Article


Natural killer (NK) cell is a key component of innate immunity and plays an important role in host defense against virus infection by directly destroying infected cells. Influenza is a respiratory disease transmitted in the early phase of virus infection. Evasion of host innate immunity including NK cells is critical for the virus to expand and establish a successful acute infection. Previously, we showed that human influenza H1N1 virus infects NK cells and induces cell apoptosis, as well as inhibits NK cell activity. In this study, we further demonstrated that avian influenza virus also directly targeted NK cells as an immunoevasion strategy. The avian virus infected human NK cells and induced cell apoptosis. In addition, avian influenza virion and HA protein inhibited NK cell cytotoxicity. This novel strategy has obvious advantages for avian influenza virus, allowing the virus sufficient time to expand and subsequent spread before the onset of the specific immune response. Our findings provide an important clue for the immunopathogenesis of avian influenza, and also suggest that direct targeting NK cells may be a common strategy used by both human and avian influenza viruses to evade NK cell immunity.


natural killer (NK) cell avian influenza virus (AIV) immunoevasion direction infection inhibition cytotoxicity 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abdel-Ghafar AN, Chotpitayasunondh T, Gao Z, Hayden FG, Nguyen DH, de Jong MD, Naghdaliyev A, Peiris JS, Shindo N, Soeroso S, Uyeki TM. 2008. Update on avian influenza A (H5N1) virus infection in humans. N Engl J Med, 358: 261–273.CrossRefPubMedGoogle Scholar
  2. Achdout H, Manaster I, Mandelboim O. 2008. Influenza virus infection augments NK cell inhibition through reorganization of major histocompatibility complex class I proteins. J Virol, 82: 8030–8037.CrossRefPubMedPubMedCentralGoogle Scholar
  3. Arnon TI, Achdout H, Levi O, Markel G, Saleh N, Katz G, Gazit R, Gonen-Gross T, Hanna J, Nahari E, Porgador A, Honigman A, Plachter B, Mevorach D, Wolf DG, Mandelboim O. 2005. Inhibition of the NKp30 activating receptor by pp65 of human cytomegalovirus. Nat Immunol, 6: 515–523.CrossRefPubMedGoogle Scholar
  4. Arnon TI, Achdout H, Lieberman N, Gazit R, Gonen-Gross T, Katz G, Bar-Ilan A, Bloushtain N, Lev M, Joseph A, Kedar E, Porgador A, Mandelboim O. 2004. The mechanisms controlling the recognition of tumor-and virus-infected cells by NKp46. Blood, 103: 664–672.CrossRefPubMedGoogle Scholar
  5. Bar-On Y, Seidel E, Tsukerman P, Mandelboim M, Mandelboim O. 2014. Influenza virus uses its neuraminidase protein to evade the recognition of two activating NK cell receptors. J Infect Dis, 210: 410–418.CrossRefPubMedPubMedCentralGoogle Scholar
  6. Chehimi J, Bandyopadhyay S, Prakash K, Perussia B, Hassan NF, Kawashima H, Campbell D, Kornbluth J, Starr SE. 1991. In vitro infection of natural killer cells with different human immunodeficiency virus type 1 isolates. J Virol, 65: 1812–1822.PubMedPubMedCentralGoogle Scholar
  7. Cooper MA, Fehniger TA, Caligiuri MA. 2001. The biology of human natural killer-cell subsets. Trends Immunol, 22: 633–640.CrossRefPubMedGoogle Scholar
  8. Crotta S, Stilla A, Wack A, D’Andrea A, Nuti S, D’Oro U, Mosca M, Filliponi F, Brunetto RM, Bonino F, Abrignani S, Valiante NM. 2002. Inhibition of natural killer cells through engagement of CD81 by the major hepatitis C virus envelope protein. J Exp Med, 195: 35–41.CrossRefPubMedPubMedCentralGoogle Scholar
  9. de Jong MD, Simmons CP, Thanh TT, Hien VM, Smith GJ, Chau TN, Hoang DM, Chau NV, Khanh TH, Dong VC, Qui PT, Cam BV, Hado Q, Guan Y, Peiris JS, Chinh NT, Hien TT, Farrar J. 2006. Fatal outcome of human influenza A (H5N1) is associated with high viral load and hypercytokinemia. Nat Med, 12: 1203–1207.CrossRefPubMedPubMedCentralGoogle Scholar
  10. Draghi M, Pashine A, Sanjanwala B, Gendzekhadze K, Cantoni C, Cosman D, Moretta A, Valiante NM, Parham P. 2007. NKp46 and NKG2D recognition of infected dendritic cells is necessary for NK cell activation in the human response to influenza infection. J Immunol, 178: 2688–2698.CrossRefPubMedGoogle Scholar
  11. Fernandez-Sesma A, Marukian S, Ebersole BJ, Kaminski D, Park MS, Yuen T, Sealfon SC, Garcia-Sastre A, Moran TM. 2006. Influenza virus evades innate and adaptive immunity via the NS1 protein. J Virol, 80: 6295–6304.CrossRefPubMedPubMedCentralGoogle Scholar
  12. Gambotto A, Barratt-Boyes SM, de Jong MD, Neumann G, Kawaoka Y. 2008. Human infection with highly pathogenic H5N1 influenza virus. Lancet, 371: 1464–1475.CrossRefPubMedGoogle Scholar
  13. Guo H, Kumar P, Moran TM, Garcia-Sastre A, Zhou Y, Malarkannan S. 2009. The functional impairment of natural killer cells during influenza virus infection. Immunol Cell Biol, 87: 579–589.CrossRefPubMedPubMedCentralGoogle Scholar
  14. Isobe Y, Sugimoto K, Yang L, Tamayose K, Egashira M, Kaneko T, Takada K, Oshimi K. 2004. Epstein-Barr virus infection of human natural killer cell lines and peripheral blood natural killer cells. Cancer Res, 64: 2167–2174.CrossRefPubMedGoogle Scholar
  15. Jonjic S, Babic M, Polic B, Krmpotic A. 2008. Immune evasion of natural killer cells by viruses. Curr Opin Immunol, 20: 30–38.CrossRefPubMedPubMedCentralGoogle Scholar
  16. Katze MG, Fornek JL, Palermo RE, Walters KA, Korth MJ. 2008. Innate immune modulation by RNA viruses: emerging insights from functional genomics. Nat Rev Immunol, 8: 644–654.CrossRefPubMedGoogle Scholar
  17. Li J, Li H, Mao H, Yu M, Yang F, Feng T, Fan Y, Lu Q, Shen C, Yin Z, Mao M, Tu W. 2013. Impaired NK cell antiviral cytokine response against influenza virus in small-for-gestationalage neonates. Cell Mol Immunol, 10: 437–443.CrossRefPubMedPubMedCentralGoogle Scholar
  18. Lodoen MB, Lanier LL. 2005. Viral modulation of NK cell immunity. Nat Rev Microbiol, 3: 59–69.CrossRefPubMedGoogle Scholar
  19. Lodoen MB, Lanier LL. 2006. Natural killer cells as an initial defense against pathogens. Curr Opin Immunol, 18: 391–398.CrossRefPubMedGoogle Scholar
  20. Mandelboim O, Lieberman N, Lev M, Paul L, Arnon TI, Bushkin Y, Davis DM, Strominger JL, Yewdell JW, Porgador A. 2001. Recognition of haemagglutinins on virus-infected cells by NKp46 activates lysis by human NK cells. Nature, 409: 1055–1060.CrossRefPubMedGoogle Scholar
  21. Mao H, Tu W, Liu Y, Qin G, Zheng J, Chan PL, Lam KT, Peiris JS, Lau YL. 2010. Inhibition of human natural killer cell activity by influenza virions and hemagglutinin. J Virol, 84: 4148–4157.CrossRefPubMedPubMedCentralGoogle Scholar
  22. Mao H, Tu W, Qin G, Law HK, Sia SF, Chan PL, Liu Y, Lam KT, Zheng J, Peiris M, Lau YL. 2009. Influenza virus directly infects human natural killer cells and induces cell apoptosis. J Virol, 83: 9215–9222.CrossRefPubMedPubMedCentralGoogle Scholar
  23. Matrosovich MN, Matrosovich TY, Gray T, Roberts NA, Klenk HD. 2004. Human and avian influenza viruses target different cell types in cultures of human airway epithelium. Proc Natl Acad Sci U S A, 101: 4620–4624.CrossRefPubMedPubMedCentralGoogle Scholar
  24. Nguyen TH, Farrar J, Horby P. 2008. Person-to-person transmission of influenza A (H5N1). Lancet, 371: 1392–1394.CrossRefPubMedGoogle Scholar
  25. Orange JS, Fassett MS, Koopman LA, Boyson JE, Strominger JL. 2002. Viral evasion of natural killer cells. Nat Immunol, 3: 1006–1012.CrossRefPubMedGoogle Scholar
  26. Owen RE, Yamada E, Thompson CI, Phillipson LJ, Thompson C, Taylor E, Zambon M, Osborn HM, Barclay WS, Borrow P. 2007. Alterations in receptor binding properties of recent human influenza H3N2 viruses are associated with reduced natural killer cell lysis of infected cells. J Virol, 81: 11170–11178.CrossRefPubMedPubMedCentralGoogle Scholar
  27. Parker AK, Yokoyama WM, Corbett JA, Chen N, Buller RM. 2008. Primary naive and interleukin-2-activated natural killer cells do not support efficient ectromelia virus replication. J Gen Virol, 89: 751–759.CrossRefPubMedGoogle Scholar
  28. Peiris JS, Yu WC, Leung CW, Cheung CY, Ng WF, Nicholls JM, Ng TK, Chan KH, Lai ST, Lim WL, Yuen KY, Guan Y. 2004. Re-emergence of fatal human influenza A subtype H5N1 disease. Lancet, 363: 617–619.CrossRefPubMedGoogle Scholar
  29. Peruzzi M, Azzari C, Rossi ME, De Martino M, Vierucci A. 2000. Inhibition of natural killer cell cytotoxicity and interferon gamma production by the envelope protein of HIV and prevention by vasoactive intestinal peptide. AIDS Res Hum Retroviruses, 16: 1067–1073.CrossRefPubMedGoogle Scholar
  30. Rogers GN, Pritchett TJ, Lane JL, Paulson JC. 1983. Differential sensitivity of human, avian, and equine influenza A viruses to a glycoprotein inhibitor of infection: selection of receptor specific variants. Virology, 131: 394–408.CrossRefPubMedGoogle Scholar
  31. Scalzo AA. 2002. Successful control of viruses by NK cells—a balance of opposing forces? Trends Microbiol, 10: 470–474.CrossRefPubMedGoogle Scholar
  32. Spies T, Groh V. 2006. Natural cytotoxicity receptors: influenza virus in the spotlight. Nat Immunol, 7: 443–444.CrossRefPubMedGoogle Scholar
  33. Su S, Bi Y, Wong G, Gray GC, Gao GF, Li S. 2015. Epidemiology, Evolution, and Recent Outbreaks of Avian Influenza Virus in China. J Virol, 89: 8671–8676.CrossRefPubMedPubMedCentralGoogle Scholar
  34. Sun Y, Liu J. 2015. H9N2 influenza virus in China: a cause of concern. Protein Cell, 6: 18–25.CrossRefPubMedGoogle Scholar
  35. Tam JS. 2002. Influenza A (H5N1) in Hong Kong: an overview. Vaccine, 20 Suppl 2: S77–S81.CrossRefPubMedGoogle Scholar
  36. Thomas JK, Noppenberger J. 2007. Avian influenza: a review. Am J Health Syst Pharm, 64: 149–165.CrossRefPubMedGoogle Scholar
  37. Ungchusak K, Auewarakul P, Dowell SF, Kitphati R, Auwanit W, Puthavathana P, Uiprasertkul M, Boonnak K, Pittayawonganon C, Cox NJ, Zaki SR, Thawatsupha P, Chittaganpitch M, Khontong R, Simmerman JM, Chunsutthiwat S. 2005. Probable person-to-person transmission of avian influenza A (H5N1). N Engl J Med, 352: 333–340.CrossRefPubMedGoogle Scholar
  38. Van Kerkhove MD. 2013. Brief literature review for the WHO global influenza research agenda—highly pathogenic avian influenza H5N1 risk in humans. Influenza Other Respir Viruses, 7 Suppl 2: 26–33.CrossRefPubMedGoogle Scholar
  39. Wang H, Feng Z, Shu Y, Yu H, Zhou L, Zu R, Huai Y, Dong J, Bao C, Wen L, Wang H, Yang P, Zhao W, Dong L, Zhou M, Liao Q, Yang H, Wang M, Lu X, Shi Z, Wang W, Gu L, Zhu F, Li Q, Yin W, Yang W, Li D, Uyeki TM, Wang Y. 2008. Probable limited person-to-person transmission of highly pathogenic avian influenza A (H5N1) virus in China. Lancet, 371: 1427–1434.CrossRefPubMedGoogle Scholar
  40. Webster RG, Govorkova EA. 2006. H5N1 influenza—continuing evolution and spread. N Engl J Med, 355: 2174–2177.CrossRefPubMedGoogle Scholar
  41. WHO. 2006. Epidemiology of WHO-confirmed human cases of avian influenza A (H5N1) infection. Wkly Epidemiol Rec, 81: 249–257.Google Scholar
  42. WHO. 2015. Cumulative number of confirmed human cases for avian influenza A (H5N1) reported to WHO, 2003–2015. Available: Accessed 23 November 2016Google Scholar
  43. Yuen KY, Chan PK, Peiris M, Tsang DN, Que TL, Shortridge KF, Cheung PT, To WK, Ho ET, Sung R, Cheng AF. 1998. Clinical features and rapid viral diagnosis of human disease associated with avian influenza A H5N1 virus. Lancet, 351: 467–471.CrossRefPubMedGoogle Scholar
  44. Zhang KY, Zhu L, Bai JG, Han ZY, Guo HM, Zhang ZP, Zhu QY. 2012. Altered lymphocyte counts in a pediatric patient with H5N1 infection. Pediatr Emerg Care, 28: 921–923.CrossRefPubMedGoogle Scholar
  45. Zocchi MR, Rubartelli A, Morgavi P, Poggi A. 1998. HIV-1 Tat inhibits human natural killer cell function by blocking L-type calcium channels. J Immunol, 161: 2938–2943.PubMedGoogle Scholar

Copyright information

© Wuhan Institute of Virology, CAS and Springer Science+Business Media Singapore 2017

Authors and Affiliations

  1. 1.Department of PaediatricsThe University of Hong Kong - Shenzhen HospitalShenzhenChina
  2. 2.Department of Paediatrics & Adolescent Medicine, Li Ka Shing Faculty of MedicineThe University of Hong KongHong Kong SARChina
  3. 3.Department of MicrobiologyThe University of Hong KongHong Kong SARChina
  4. 4.Shenzhen Engineering Laboratory of PID Diagnosis & Therapy TechnologyShenzhenChina

Personalised recommendations