Entry of severe fever with thrombocytopenia syndrome virus

Abstract

Severe fever with thrombocytopenia syndrome virus (SFTSV) is a globe-shaped virus covered by a dense icosahedral array of glycoproteins Gn/Gc that mediate the attachment of the virus to host cells and the fusion of viral and cellular membranes. Several membrane factors are involved in virus entry, including C-type lectins and nonmuscle myosin heavy chain IIA. The post-fusion crystal structure of the Gc protein suggests that it is a class II membrane fusion protein, similar to the E/E1 protein of flaviviruses and alphaviruses. The virus particles are internalized into host cell endosomes through the clathrin-dependent pathway, where the low pH activates the fusion of the virus with the cell membrane. With information from studies on other bunyaviruses, herein we will review our knowledge of the entry process of SFTSV.

This is a preview of subscription content, log in to check access.

Figure 1
Figure 2

References

  1. Antic D, Wright KE, Kang CY. 1992. Maturation of Hantaan virus glycoproteins G1 and G2. Virology, 189: 324–328.

    CAS  PubMed  Article  Google Scholar 

  2. Arii J, Goto H, Suenaga T, Oyama M, Kozuka-Hata H, Imai T, Minowa A, Akashi H, Arase H, Kawaoka Y, Kawaguchi Y. 2010. Non-muscle myosin IIA is a functional entry receptor for herpes simplex virus-1. Nature, 467: 859–862.

    CAS  PubMed  Article  Google Scholar 

  3. Cifuentes-Munoz N, Salazar-Quiroz N, Tischler ND. 2014. Hantavirus Gn and Gc envelope glycoproteins: key structural units for virus cell entry and virus assembly. Viruses, 6: 1801–1822.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  4. de Boer SM, Kortekaas J, de Haan CA, Rottier PJ, Moormann RJ, Bosch BJ. 2012. Heparan sulfate facilitates Rift Valley fever virus entry into the cell. J Virol, 86: 13767–13771.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  5. Denic S, Janbeih J, Nair S, Conca W, Tariq WU, Al-Salam S. 2011. Acute Thrombocytopenia, Leucopenia, and Multiorgan Dysfunction: The First Case of SFTS Bunyavirus outside China? Case Rep Infect Dis, 2011: 204056.

    PubMed  PubMed Central  Google Scholar 

  6. Dessau M, Modis Y. 2013. Crystal structure of glycoprotein C from Rift Valley fever virus. Proc Natl Acad Sci U S A, 110: 1696–1701.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  7. Engering A, Geijtenbeek TB, van Vliet SJ, Wijers M, van Liempt E, Demaurex N, Lanzavecchia A, Fransen J, Figdor CG, Piguet V, van Kooyk Y. 2002. The dendritic cell-specific adhesion receptor DC-SIGN internalizes antigen for presentation to T cells. J Immunol, 168: 2118–2126.

    CAS  PubMed  Article  Google Scholar 

  8. Garry CE, Garry RF. 2004. Proteomics computational analyses suggest that the carboxyl terminal glycoproteins of Bunyaviruses are class II viral fusion protein (beta-penetrenes). Theor Biol Med Model, 1: 10.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  9. Gerrard SR, Nichol ST. 2002. Characterization of the Golgi retention motif of Rift Valley fever virus G(N) glycoprotein. J Virol, 76: 12200–12210.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  10. Gerrard SR, Nichol ST. 2007. Synthesis, proteolytic processing and complex formation of N-terminally nested precursor proteins of the Rift Valley fever virus glycoproteins. Virology, 357: 124–133.

    CAS  PubMed  Article  Google Scholar 

  11. Gibbons DL, Vaney M-C, Roussel A, Vigouroux A, Reilly B, Lepault J, Kielian M, Rey FA. 2004. Conformational change and protein-protein interactions of the fusion protein of Semliki Forest virus. Nature, 427: 320–325.

    CAS  PubMed  Article  Google Scholar 

  12. Halldorsson S, Behrens AJ, Harlos K, Huiskonen JT, Elliott RM, Crispin M, Brennan B, Bowden TA. 2016. Structure of a phleboviral envelope glycoprotein reveals a consolidated model of membrane fusion. Proc Natl Acad Sci U S A, 113: 7154–7159.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  13. Heijink AM, Blomen VA, Bisteau X, Degener F, Matsushita FY, Kaldis P, Foijer F, van Vugt MA. 2015. A haploid genetic screen identifies the G1/S regulatory machinery as a determinant of Wee1 inhibitor sensitivity. Proc Natl Acad Sci U S A, 112: 15160–15165.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  14. Hofmann H, Li X, Zhang X, Liu W, Kuhl A, Kaup F, Soldan SS, Gonzalez-Scarano F, Weber F, He Y, Pohlmann S. 2013. Severe fever with thrombocytopenia virus glycoproteins are targeted by neutralizing antibodies and can use DC-SIGN as a receptor for pH-dependent entry into human and animal cell lines. J Virol, 87: 4384–4394.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  15. Hollidge BS, Nedelsky NB, Salzano MV, Fraser JW, Gonzalez-Scarano F, Soldan SS. 2012. Orthobunyavirus entry into neurons and other mammalian cells occurs via clathrin-mediated endocytosis and requires trafficking into early endosomes. J Virol, 86: 7988–8001.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  16. Huiskonen JT, Overby AK, Weber F, Grunewald K. 2009. Electron cryo-microscopy and single-particle averaging of Rift Valley fever virus: evidence for GN-GC glycoprotein heterodimers. J Virol, 83: 3762–3769.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  17. Jin C, Liang M, Ning J, Gu W, Jiang H, Wu W, Zhang F, Li C, Zhang Q, Zhu H, Chen T, Han Y, Zhang W, Zhang S, Wang Q, Sun L, Liu Q, Li J, Wang T, Wei Q, Wang S, Deng Y, Qin C, Li D. 2012. Pathogenesis of emerging severe fever with thrombocytopenia syndrome virus in C57/BL6 mouse model. Proc Natl Acad Sci U S A, 109: 10053–10058.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  18. Kielian M, Chanel-Vos C, Liao M. 2010. Alphavirus entry and membrane fusion. Viruses, 2: 796–825.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  19. Kielian M, Rey FA. 2006. Virus membrane fusion proteins: more than one way to make a hairpin. Nat Rev Microbiol, 4: 67–76.

    CAS  PubMed  Article  Google Scholar 

  20. Kuismanen E. 1984. Posttranslational processing of Uukuniemi virus glycoproteins G1 and G2. J Virol, 51: 806–812.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  21. Liu J, Thorp SC. 2002. Cell surface heparan sulfate and its roles in assisting viral infections. Med Res Rev, 22: 1–25.

    PubMed  Article  Google Scholar 

  22. Liu Q, He B, Huang SY, Wei F, Zhu XQ. 2014. Severe fever with thrombocytopenia syndrome, an emerging tick-borne zoonosis. Lancet Infect Dis, 14: 763–772.

    CAS  PubMed  Article  Google Scholar 

  23. Liu S, Chai C, Wang C, Amer S, Lv H, He H, Sun J, Lin J. 2014. Systematic review of severe fever with thrombocytopenia syndrome: virology, epidemiology, and clinical characteristics. Rev Med Virol, 24: 90–102.

    CAS  PubMed  Article  Google Scholar 

  24. Lober C, Anheier B, Lindow S, Klenk HD, Feldmann H. 2001. The Hantaan virus glycoprotein precursor is cleaved at the conserved pentapeptide WAASA. Virology, 289: 224–229.

    CAS  PubMed  Article  Google Scholar 

  25. Lozach PY, Kuhbacher A, Meier R, Mancini R, Bitto D, Bouloy M, Helenius A. 2011. DC-SIGN as a receptor for phleboviruses. Cell Host Microbe, 10: 75–88.

    CAS  PubMed  Article  Google Scholar 

  26. Lozach PY, Mancini R, Bitto D, Meier R, Oestereich L, Overby AK, Pettersson RF, Helenius A. 2010. Entry of bunyaviruses into mammalian cells. Cell Host Microbe, 7: 488–499.

    CAS  PubMed  Article  Google Scholar 

  27. Madoff DH, Lenard J. 1982. A membrane glycoprotein that accumulates intracellularly: cellular processing of the large glycoprotein of LaCrosse virus. Cell, 28: 821–829.

    CAS  PubMed  Article  Google Scholar 

  28. Marklewitz M, Handrick S, Grasse W, Kurth A, Lukashev A, Drosten C, Ellerbrok H, Leendertz FH, Pauli G, Junglen S. 2011. Gouleako virus isolated from West African mosquitoes constitutes a proposed novel genus in the family Bunyaviridae. J Virol, 85: 9227–9234.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  29. McMullan LK, Folk SM, Kelly AJ, MacNeil A, Goldsmith CS, Metcalfe MG, Batten BC, Albarino CG, Zaki SR, Rollin PE, Nicholson WL, Nichol ST. 2012. A new phlebovirus associated with severe febrile illness in Missouri. N Engl J Med, 367: 834–841.

    CAS  PubMed  Article  Google Scholar 

  30. Modis Y, Ogata S, Clements D, Harrison SC. 2004. Structure of the dengue virus envelope protein after membrane fusion. Nature, 427: 313–319.

    CAS  PubMed  Article  Google Scholar 

  31. Navarro-Sanchez E, Altmeyer R, Amara A, Schwartz O, Fieschi F, Virelizier JL, Arenzana-Seisdedos F, Despres P. 2003. Dendriticcell-specific ICAM3-grabbing non-integrin is essential for the productive infection of human dendritic cells by mosquito-cellderived dengue viruses. EMBO Rep, 4: 723–728.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  32. Novoa RR, Calderita G, Cabezas P, Elliott RM, Risco C. 2005. Key Golgi factors for structural and functional maturation of bunyamwera virus. J Virol, 79: 10852–10863.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  33. Overby AK, Pettersson RF, Grunewald K, Huiskonen JT. 2008. Insights into bunyavirus architecture from electron cryotomography of Uukuniemi virus. Proc Natl Acad Sci U S A, 105: 2375–2379.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  34. Overby AK, Popov V, Neve EP, Pettersson RF. 2006. Generation and analysis of infectious virus-like particles of uukuniemi virus (bunyaviridae): a useful system for studying bunyaviral packaging and budding. J Virol, 80: 10428–10435.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  35. Pierson TC, Kielian M. 2013. Flaviviruses: braking the entering. Curr Opin Virol, 3: 3–12.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  36. Piper ME, Sorenson DR, Gerrard SR. 2011. Efficient cellular release of Rift Valley fever virus requires genomic RNA. PLoS One, 6: e18070.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  37. Rusu M, Bonneau R, Holbrook MR, Watowich SJ, Birmanns S, Wriggers W, Freiberg AN. 2012. An assembly model of rift valley Fever virus. Front Microbiol, 3: 254.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  38. Santos RI, Rodrigues AH, Silva ML, Mortara RA, Rossi MA, Jamur MC, Oliver C, Arruda E. 2008. Oropouche virus entry into HeLa cells involves clathrin and requires endosomal acidification. Virus Res, 138: 139–143.

    CAS  PubMed  Article  Google Scholar 

  39. Shi X, Brauburger K, Elliott RM. 2005. Role of N-linked glycans on bunyamwera virus glycoproteins in intracellular trafficking, protein folding, and virus infectivity. J Virol, 79: 13725–13734.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  40. Spiropoulou CF. 2001. Hantavirus maturation. Curr Top Microbiol Immunol, 256: 33–46.

    CAS  PubMed  Google Scholar 

  41. Sun Y, Qi Y, Liu C, Gao W, Chen P, Fu L, Peng B, Wang H, Jing Z, Zhong G, Li W. 2014. Nonmuscle myosin heavy chain IIA is a critical factor contributing to the efficiency of early infection of severe fever with thrombocytopenia syndrome virus. J Virol, 88: 237–248.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  42. Svajger U, Anderluh M, Jeras M, Obermajer N. 2010. C-type lectin DC-SIGN: an adhesion, signalling and antigen-uptake molecule that guides dendritic cells in immunity. Cell Signal, 22: 1397–1405.

    CAS  PubMed  Article  Google Scholar 

  43. Takahashi T, Maeda K, Suzuki T, Ishido A, Shigeoka T, Tominaga T, Kamei T, Honda M, Ninomiya D, Sakai T, Senba T, Kaneyuki S, Sakaguchi S, Satoh A, Hosokawa T, Kawabe Y, Kurihara S, Izumikawa K, Kohno S, Azuma T, Suemori K, Yasukawa M, Mizutani T, Omatsu T, Katayama Y, Miyahara M, Ijuin M, Doi K, Okuda M, Umeki K, Saito T, Fukushima K, Nakajima K, Yoshikawa T, Tani H, Fukushi S, Fukuma A, Ogata M, Shimojima M, Nakajima N, Nagata N, Katano H, Fukumoto H, Sato Y, Hasegawa H, Yamagishi T, Oishi K, Kurane I, Morikawa S, Saijo M. 2014. The first identification and retrospective study of Severe Fever with Thrombocytopenia Syndrome in Japan. J Infect Dis, 209: 816–827.

    CAS  PubMed  Article  Google Scholar 

  44. Tani H, Shimojima M, Fukushi S, Yoshikawa T, Fukuma A, Taniguchi S, Morikawa S, Saijo M. 2016. Characterization of Glycoprotein-Mediated Entry of Severe Fever with Thrombocytopenia Syndrome Virus. J Virol, 90: 5292–5301.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  45. Tassaneetrithep B, Burgess TH, Granelli-Piperno A, Trumpfheller C, Finke J, Sun W, Eller MA, Pattanapanyasat K, Sarasombath S, Birx DL, Steinman RM, Schlesinger S, Marovich MA. 2003. DC-SIGN (CD209) mediates dengue virus infection of human dendritic cells. J Exp Med, 197: 823–829.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  46. Tischler ND, Gonzalez A, Perez-Acle T, Rosemblatt M, Valenzuela PD. 2005. Hantavirus Gc glycoprotein: evidence for a class II fusion protein. JGV, 86: 2937–2947.

    CAS  Google Scholar 

  47. van Kooyk Y. 2008. C-type lectins on dendritic cells: key modulators for the induction of immune responses. Biochem Soc Trans, 36: 1478–1481.

    PubMed  Article  CAS  Google Scholar 

  48. Varki A. 2007. Glycan-based interactions involving vertebrate sialic-acid-recognizing proteins. Nature, 446: 1023–1029.

    CAS  PubMed  Article  Google Scholar 

  49. Vicente-Manzanares M, Ma X, Adelstein RS, Horwitz AR. 2009. Non-muscle myosin II takes centre stage in cell adhesion and migration. Nat Rev Mol Cell Biol, 10: 778–790.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  50. Wasmoen TL, Kakach LT, Collett MS. 1988. Rift Valley fever virus M segment: cellular localization of M segment-encoded proteins. Virology, 166: 275–280.

    CAS  PubMed  Article  Google Scholar 

  51. Yu IM, Zhang W, Holdaway HA, Li L, Kostyuchenko VA, Chipman PR, Kuhn RJ, Rossmann MG, Chen J. 2008. Structure of the immature dengue virus at low pH primes proteolytic maturation. Science, 319: 1834–1837.

    CAS  PubMed  Article  Google Scholar 

  52. Yu XJ, Liang MF, Zhang SY, Liu Y, Li JD, Sun YL, Zhang L, Zhang QF, Popov VL, Li C, Qu J, Li Q, Zhang YP, Hai R, Wu W, Wang Q, Zhan FX, Wang XJ, Kan B, Wang SW, Wan KL, Jing HQ, Lu JX, Yin WW, Zhou H, Guan XH, Liu JF, Bi ZQ, Liu GH, Ren J, Wang H, Zhao Z, Song JD, He JR, Wan T, Zhang JS, Fu XP, Sun LN, Dong XP, Feng ZJ, Yang WZ, Hong T, Zhang Y, Walker DH, Wang Y, Li DX. 2011. Fever with thrombocytopenia associated with a novel bunyavirus in China. N Engl J Med, 364: 1523–1532.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

Download references

Acknowledgments

This work was funded by the National Key Plan for Scientific Research and Development of China (2016YFD0500300), the Strategic Priority Research Program of the Chinese Academy of Sciences (CAS) (XDB11030800), and the Natural Science Foundation of China (L1524009).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Fei Yuan.

Ethics declarations

The authors declare that they have no conflict of interest. This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

ORCID: 0000-0003-3053-7063

ORCID: 0000-0002-2184-227X

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yuan, F., Zheng, A. Entry of severe fever with thrombocytopenia syndrome virus. Virol. Sin. 32, 44–50 (2017). https://doi.org/10.1007/s12250-016-3858-6

Download citation

Keywords

  • severe fever with thrombocytopenia syndrome virus (SFTSV)
  • bunyavirus
  • entry
  • fusion
  • receptor